
ROBERT ALLEN SCOTT AWARD REPORT

Mathematics and Computer Science Department
Rhodes College

Center Regions and Colored Tverberg Points

Michael Siler1

Advisor: Dr. Ivaylo Ilinkin1

July 31, 2008

1{silwm, ilinkin}@rhodes.edu, Department of Mathematics and Computer Science, Rhodes
College

1

1. Preface

The purpose of this summer research project was to learn about computational
geometry, which is a branch of computer science that studies algorithms that deal
with properties of configurations of objects in space. This purpose was achieved
in two ways. The first was by studying the problem of finding the center region

(defined below) of a set of points in the plane. I studied and applied several impor-
tant concepts of computational geometry to develop the results presented below.
However, I avoided the published results devoted to this problem, so that I could
develop the results on my own. As such, the results presented here are original
work, but not new.

Secondly, I studied a recent computational geometry publication and tried to
improve one of its results on Colored Tverberg points. This problem is a specialized
version of the center region problem that has not been well studied. This objective
was achieved in that several ways of attacking this problem were examined, and
some very promising lines of research were discovered.

The remainder of this paper will describe the problems I analyzed, some back-
ground information on computational geometry, and my work.

2. Introduction

Let S be a set of n points in R
d. A point x ∈ R

d is said to have depth k in S if
every closed halfspace containing x contains at least k points of S. Without loss of
generality, only the closed halfspaces with x a member of the bounding hyperplane
need be considered. The depth-k region of S is the set of all points of depth k in
S and is denoted ck(S). In [1], it is shown that if k ≤ ⌈n/(d + 1)⌉ then ck(S) is
nonempty. Points with depth of at least ⌈n/(d + 1)⌉ are called center points and
c⌈n/(d+1)⌉(S) is called the center region.

Let R, G, and B be disjoint “red”, “green”, and “blue” sets of n points in the
plane, and let S = R ∪ G ∪ B. A multicolored triangle is a set of points {r, g, b}
where r ∈ R, g ∈ G, and b ∈ B, and a triangle is said to cover a point x if x
is on the boundary or in the interior of the triangle. A point x ∈ R

2 is called a
Colored Tverberg point (CTP) if there exists a pairwise disjoint set of n multicolored
triangles which each cover x.

In Section 3 we will described classic concepts in computational geometry that
will be used in Section 4 to develop an O(n2) algorithm for finding center regions.
Section 5 will describe the only known polynomial time algorithm for determining
if a given point is a CTP [1], and Section 6 attempts to provide a tighter bound for
the algorithm in [1] through a more thorough analysis.

3. Arrangements, Duality, and Convex Hulls

Three classic concepts in computational geometry are arrangements, duality, and
convex hulls. We will give a brief explanation of each here.

3.1. Arrangements. A set L of n lines in the plane partitions it into vertices
(where lines intersect), edges (segments of the lines that run between vertices),
and faces (the spaces closed off by edges and vertices). This partition is called the
arrangement of L and is denoted A(L). The arrangement A(L) can be stored in
a data structure called a “doubly-connected edge list” (DCEL). The DCEL con-
tains a record of every edge, face, and vertex in A(L) and provides a very useful

2

interface. Given a vertex from A(L), we can “walk” around it and get an ordered
list of the incident edges. Given an edge, we can get the incident vertices and the
faces it bounds, and given a face, we can “walk” around it and get the bounding
edges. The DCEL of the arrangement A(L) can be constructed with the following
algorithm given in [6]:

Algorithm ConstructArrangement

Input: A set L of n lines.
Output: A DCEL for the arrangment A(L).
1. Construct A0, a DCEL for an empty arrangement.
2. for i← 1 to n
3. do Ai ← Ai−1

4. Insert line li into Ai as follows:
5. Find an intersection point x between li and some line of Ai

6. Walk forward from x along the faces li hits, and update Ai

7. Walk backward from x along the faces li hits, and update Ai

The Zone Theorem [6] tells us that each line we add will intersect O(n) faces.
Thus, we have the following lemma.

Lemma 1. An arrangement of n lines can be constructed in O(n2) time.

3.2. Duality. Arrangements are quite useful when studying a set of lines, but the
concept of duality allows us to use the obvious and inherent structure of arrange-
ments when studying a set of points as well. Note that a point in R

2 is defined by
two real coordinates, and a line in R

2 is defined by two real values, a slope and a
y-intercept. Hence, we can map points to unique lines and vice versa. The original
space is called the primal space, and the transformed space is the dual space. There
are many ways to form this transformation. The following is perhaps the simplest:

(a, b)⇔ y = ax− b

Figure 1 shows an example of this transformation. Note that this transformation
does not allow for vertical lines. This is not a problem, because vertical lines can
generally be ignored or treated as a special case. The dual of a point p is denoted
p∗; duals of lines are indicated similarly, l ⇔ l∗. Let p be a point in the plane
and l be a non-vertical line in the plane. A duality transform must satisfy two
requirements

(1) p ∈ l if and only if l∗ ∈ p∗.
(2) p lies above l if and only if l∗ lies above p∗.

It is natural to consider what a line segment transforms to. A line segment can
be thought of as a set of colinear points. These points transform to an infinite set
of lines which all share a common point. Thus, the dual of a line segment forms a
double wedge which is bounded by the transformed endpoints of the line segment
(see Figure 2).

Note that we do not gain any more information by switching to the dual from the
primal space, but a collection of lines has more apparent structure than a collection
of points, and it allows us to use the properties of arrangements.

3

b

c

d

l
y

x

a

a*

b*

c*

d*

l*

y

x

Figure 1. Left: Primal plane. Right: Dual plane.

p

q

s

l

l*

p*
q*

s*

Figure 2. Left: Primal plane. Right: Dual plane.

3.3. Convex Hull. The final classic computational geometry technique that we
discuss is finding convex hulls. A region X of the plane is convex if for every
a, b ∈ X , the line segment ab is contained in X . The convex hull of a finite set of
points C is the unique convex polygon containing C whose vertices are elements of
C. There are many O(n log n) algorithms for computing the convex hull of a set of
points in the plane, such as Graham’s scan [3] and a divide-and-conquer algorithm
given by Preparata and Hong [7]. We present an incremental O(n log n) algorithm
described in [2]. Let C be a set of n points in the plane. Denote by ch(C) the
convex hull of C. The convex hull of C can be broken into two halves, upper and
lower. When the points of the upper half of ch(C) are examined from left to right,
any three consecutive points will turn right. Points from the lower half turn left.
Algorithm ConvexHull incrementally adds the points of C to ch(C) and removes
any point that prevents the last three points in ch(C) from turning the correct
direction. It handles the upper and lower halves separately, and then merges them.

Algorithm ConvexHull

Input: A set C of n points in the plane.
Output: The convex hull of C.
1. Sort the points by x-coordinate, resulting in a sequence p1, . . . , pn

2. Put the points p1 and p2 in a list Lupper , with p1 as the first point.
3. for i← 3 to n
4. do Append pi to Lupper .

4

5. while Lupper contains more than two points and the last three points
in Lupper do not turn right

6. do Delete the middle of the last three points from Lupper

7. Compute the lower half Llower symmetrically, but using the input sequence
pn, . . . , p1

8. Remove the first and last point from Llower to avoid duplication of the points
where the upper and lower hull meet.

9. Append Llower to Lupper and call the resulting list L.
10. return L

The sorting step can be done in O(n log n) time, and the remainder runs in O(n)
time, giving a total runtime of O(n log n). The proof of the correctness and runtime
of this algorithm can be found in [2].

Lemma 2. The convex hull of a set of n points in the plane can be found in

O(n log n) time. If the points are given in order, then the sorting step can be

skipped, and the convex hull can be found in O(n) time.

Lemma 3. Given a point x, it is possible to find a line through x that is tangent

to a convex hull S consisting of n vertices in O(log n) time.

The tangent line can be found using a sort of binary search. The tangent line
must go through some vertex of S. If the tangent line goes through the wrong
vertex p, then we can determine which direction the line needs to be moved by
examining the two points on either side of p. We can then narrow down on the
correct point in O(log n) time (for a more detailed explanation, see [6]).

4. Center Region Algorithm

Given a set S of n points in the plane, no three of which are colinear, a point x
is a center point, if every closed half-plane whose bounding line contains x contains
at least ⌈n/3⌉ points of S. For the sake of brevity, write k = ⌈n/3⌉. Recall from
Section 2, that the center region of S is the set of all center points of S. Note that
if a and b are center points of S and c is a point on the line segment between them,
then any closed half-plane with c in its bounding line contains either a or b, so it
must contain at least k points of S. Thus, the center region is convex. There has
been some research on problems related to center points and regions. Matoušek [5]

gives an O(n log4 n) time algorithm for finding the center region of a set of planar
points, and Jadhav, et al. [4] shows that a planar center point can be found in linear
time. In the rest of this section, we give the details of the proof of the following
theorem.

Theorem 1. The center region of a set of n points can be found in O(n2) time.

Faster algorithms have been produced, but ours is easier to implement and pro-
vides a good introduction to computational geometry. The algorithm works by first
converting the points to the dual. Thus, it is important to consider what the center
region looks like in the dual. The definition of center point implies that a center
point p has the property that there are k points of S above and below every line
that goes through p. In the dual, the lines that go through p become points on the
line p∗. Thus, in the dual, there are k lines from S∗ above and below every point
on the line p∗. The center region will be the set of all lines with this property.

5

Definition 1. The lower level of a point is the number of lines on or below it. The

upper level of a point is the number of lines on or above it.

Definition 2. The k-lower region is the set of all points with lower level at least

k. The k-upper region is the set of all points with upper level at least k. For a set

of lines A, the k-lower region is denoted Lk(A), and the k-upper region is denoted

Uk(A), or simply Lk and Uk if the set of lines is clear.

The center region in the dual is the set of lines that lie entirely in Lk(S∗)∩Uk(S∗).
We will demonstrate an O(n2) algorithm for finding the center region in the dual,
then convert that region back to the primal.

After transforming S to the dual, we construct its arrangement, A(S∗). We can
determine the levels of each vertex on a line l ∈ S∗ by first finding the level of its
leftmost vertex in O(n) time by checking every other line to see if it is above or below
this vertex. Then we find the levels for every other vertex on l by walking from
left to right across l visiting each of the other vertices. Since no three lines share a
vertex, the levels of adjacent vertices can only differ by 1, and that difference can
easily be determined by considering the slope of each edge incident to the vertices.
Thus, we can find the levels of all vertices in O(n2) time.

In Figure 3, Lk(S∗) is every point on or above the bold line. Note that the
k-lower and k-upper regions will always be bounded by a path that runs through
some subset of the vertices of A(S∗). The next step of our algorithm is to determine
those vertices.

Lemma 4. The vertices bounding the k-lower region are those with lower level k+1
or k. The vertices bounding the k-upper region are those with upper level k + 1 or

k.

The proof of this is clear. As we are finding the levels of the arrangement, if we
find a vertex with level k or k + 1, then we know that two of the edges incident to
the vertex consists of points that are of level k or k + 1. We can walk along these
edges in either direction to another vertex of level k or k + 1. By continuing this
walk, we will get all level k or k + 1 vertices, in order by increasing x-coordinate.
Hence, in O(n2) time we can find the bounding vertices of Lk and Uk in order.

The region Lk ∩ Uk is the set of all points that have at least k lines of S∗ above
and below them. However, we are interested in the set of lines that have this
property at each of their points. A line will have at least k lines of S∗ below it
as long as it stays within Lk. That is, the line cannot cross the boundary of Lk.
The set of all lines with this property is the set of all lines that lie on or above
ch(Lk), similarly for ch(Uk). Thus, the next step is to compute ch(Lk) and ch(Uk).
As shown if Figure 3, Lk (and similarly, Uk) has “tail” rays coming away from the
leftmost and right most points. We do not want to include lines that cross these
rays, so we must modify our convex hull algorithm. The algorithm will be identical
to Algorithm ConvexHull , except that we may remove the leftmost or rightmost
points if their tail rays cause the hull to turn the wrong direction, in which case we
create new tails rays from the new leftmost or rightmost points, parallel to the old
rays.

There are O(n2) vertices in Lk and Uk, and they are already in order. Thus,
we can find ch(Lk) and ch(Uk) in O(n2) time. Furthermore, each line in S∗ can
contribute at most 2 vertices to ch(Lk) and ch(Uk). Therefore, ch(Lk) and ch(Uk)
have linear complexity.

6

Figure 3. The k-lower region is every point on or above the bold line.

We want the final output of our algorithm to be a set of line segments that bound
the center region. These line segments have two properties we will make use of.

(1) Points above the line segment and sufficiently close to it are center points
while those below it are not, or vice versa.

(2) Every point on the line segment is a center point.

The first property will allow us to identify the line on which the segment lies, and
the second property will tell us which section of the line we are interested in. In
the dual, the line on which the segment lies is transformed into a point, which, by
property 1, will have a “bad” side and a “good” side. Lines that run through the
bad side, which is directly above or below the dual point are not center point duals,
while lines running on the other side (sufficiently close to the point) may be center
point duals. The points in the dual with this property are those that lie on ch(Lk)
and ch(Uk). Line segments become wedges in the dual, and the only points on
the convex hull that can be the intersection of two distinct lines that do not cross
the convex hull boundary are the vertices. Thus, in trying to find the duals of the
line segments that bound the center region, we need only consider wedges that go
through vertices on ch(Lk) and ch(Uk).

If we determine that a vertex on the convex hull is the dual of a line that bounds
the center region, then the next step is to determine which segment of the line
bounds the center region. Property 2 tells us that this segment will be the union
of every center point on the line. Note that since the center region is convex, this
union will form exactly 1 line segment. Let l be a line in the primal plane which
contains a line segment l̄. In the dual, l̄∗ is a set of lines that all go through the
same point, l∗. The rightmost point of l̄ will have the greatest slope of all the lines
in l̄∗ and the leftmost point will have the least slope.

The final step in our algorithm is to visit each vertex on ch(Lk) and ch(Uk) and
determine the lines with the greatest and least slope that go through the vertex
and lie entirely in ch(Lk)∩ ch(Uk). Let {p1, . . . , pm} be the vertices of ch(Lk). For
each vertex pi there are 3 possibilities for the bounding lines of the wedge that goes
through it.

(1) The boundary lines may be tangent to ch(Uk).
(2) If the first possibility does not work (i.e. every line that runs through pi

and any point in k-upper goes through at least one of the convex hulls),

7

then there may be a boundary line running parallel to one of the tail rays
of k-upper.

(3) The line running through pi and pi−1 or pi and pi+1 may be a boundary
line.

For the first possibility, we need to be able to find a line tangent to ch(Uk)
and running through the vertex pi. As we have already seen, this can be done in
O(log n) time.

The second and third possibilities involve checking a fixed number of lines to see
if they cross ch(Uk). For each line l, we can create an orthogonal vector u. Then
(as described in [6]) we can find the point of ch(Uk) that is extreme in the direction
of u and the point extreme in the direction of −u. The line l crosses ch(Uk) if and
only if these two points are on the opposite side of l. Using the variation of a binary
search in [6], we can do this in O(log n) time. This final step is performed on each
point in ch(Lk) ∪ ch(Uk). Thus it runs in O(n log n) time.

If fewer than two lines come from these options, then this vertex is of no interest
and we can simply ignore it. Otherwise, find the bounding line with the least slope
and the one with the greatest slope. When those lines are converted back to points
in the primal space, the line segment that runs between them will be one bound of
the center region. A symmetric algorithm can be used for the k-upper vertices.

The basic outline of the center region algorithm is as follows:
O(n) Convert S to dual.

O(n2) Construct arrangement of S∗.
O(n2) Compute Lk and Uk.
O(n2) Compute ch(Lk) and ch(Uk).

O(n log n) Determine the duals of the bounding line segments as
described above.

We can therefore find the center region on n points in the plane in O(n2) time.
Faster algorithms have been produced, but this algorithm has two nice properties:
(1) it is fairly easy to implement, whereas some of the faster center region algo-
rithms are difficult to implement and are mainly of theoretical interest; (2) the basic
concept of the algorithm is easy to grasp and relies on three classic topics in compu-
tational geometry, which makes it a good, didactic introduction to computational
geometry.

5. Colored Tverberg Points

In Section 2, we introduced the problem of determining if a given point is a
Colored Tverberg point (CTP). Let S be the union of the disjoint sets R, G, B ⊂ R

2

each with n points, and let x be a point in the plane. Recall from Section 2 that
x is a CTP if S can be partitioned into n disjoint multicolored triangles that each
cover x. Agarwal, et al. give the first polynomial time algorithm for determining if
a given point is a CTP in [1]. What follows is a description of their algorithm.

Notice that we can project the points of S onto a circle C centered at x, and
this will not change the status of x as a CTP (see Figure 4). Let C0 be a closed,
half-circle subset of C, and let C1 = C − C0. Assign each point of C0 ∪ R the
label R+, and label similarly the points in G and B. The points in C1 are projected
along a straight line through x to C0 and labelled R-, G-, or B-, depending on their
color. The input to the algorithm is the list of labels read clockwise around C0 (see
Figure 4).

8

x
G

G

B B

R
R

x

R
R

G

G

B

B

x

R+

G+

B−

G−

R+
B−

G

B

B

Figure 4. Left: x is a CTP. Center: S projected onto a circle
centered at x. Right: S produces the labels R+B-B-R+G+G-.

R+G-B+ R+B-G+ R-G+B- R-B+G-

G+R-B+ G+B-R+ G-R+B- G-B+R-

B+R-G+ B+G-R+ B-R+G- B-G+R-

Table 1. All groupings of labels corresponding to multicolored
triangles covering x.

Within the list of point labels, sequences such as R+G-B+ (not necessarily consec-
utive) where the signs alternate indicate two points on one side of the circle with a
third point between them on the opposite side. Hence this is a triangle covering x.
Table 1 gives all possible multicolored triangles covering x. To determine if x is a
CTP it is sufficient to show that the list of labels created for S contains n disjoint
subsequences from Table 1.

Write E = (e1, . . . , e3n) for the ordered list of labels produced from S. The
algorithm will loop over each ei creating a set of configurations Xi for each prefix
of E, Ei = (e1, . . . , ei). A configuration in Xi represents a possible grouping of the
labels e1, . . . , ei into prefixes of the multicolored triangles in Table 1. Each point
ei can extend a configuration in Xi−1 in one of three ways:

(singleton) ei could be the first label in a new grouping that could lead
to a multicolored triangle.

(doubleton) ei could be grouped with any existing singleton of opposite
sign and color.

(triple) ei could be grouped with an existing doubleton, with which it
forms a multicolored triangle.

Therefore, each configuration needs to keep track of the number of available
singletons and doubletons. Note, we only need to keep track of the number, not the
actual list, since a label can be grouped with any appropriate prefix. There are six
possible singletons (a + and a - for each color), and 12 possible doubletons (each
singleton can be completed by two other colors of the opposite sign). Thus, each
configuration is stored as an 18-tuple of integers.

When examining ei, we will construct Xi by looping over every configuration in
Xi−1 and modifying each in up to five ways. For example, suppose ei = R+. Then
ei may create new configurations as follows:

(1) ei could be a singleton prefix; add 1 to the R+ component.

9

(2) ei could be paired with a G- we have already seen; add 1 to the G-R+ count
and subtract 1 from the G- count (because one of those points is no longer
just a singleton).

(3) ei could be paired with a B- we have already seen; add 1 to the B-R+ count
and subtract 1 from the B- count.

(4) ei could be the last point in the triple G+B-R+; subtract 1 from the G+B-

count.
(5) ei could be the last point in the triple B+G-R+; subtract 1 from the B+G-

count.

The rules are similar for the other point labels. We only allow configurations with
nonnegative components and each Xi contains no repetitions. If a configuration in
X3n contains a positive component, then some of the points were not used to form
a triangle; hence that configuration does not indicate a CTP. If the zero-tuple is
in X3n, then some sequence of configurations divided S entirely into multicolored
triangles covering x. Therefore x is a CTP.

Since each component of a configuration is an integer between 0 and n. The
number of possible configurations in Xi is O(n18). For each point, we must examine
every configuration, so the algorithm runs in O(n19) time.

Now that we have established a basic algorithm, we can optimize it. Notice that
the counts for R+B- and B+R- are only used when a G+ is completing a triple. Since
both counts must be zero at the end and each can only be decremented when we
process a G+, it does not matter which prefix we pair G+ with. Hence, we need not
store the counts for R+B- and B+R- separately; we only need their sum. Thus, we
can combine the 12 doubleton prefixes into the following 6:

(R+B-) + (B+R-)

(R+G-) + (G+R-)

(B+G-) + (G+B-)

(R-B+) + (B-R+)

(R-B+) + (B-R+)

(R-B+) + (B-R+)

The configurations are now 12-tuples, where each component has O(n) possible
values, so the algorithm runs in O(n13) time.

We can optimize this even further. Suppose ξ ∈ Xj , and let Mξ(R) be the sum
of each component in ξ that involves an element of R. Define Mξ(G) and Mξ(B)
similarly. Let Kj(R), Kj(G), and Kj(B) be the number of red, green, and blue
points, respectively, in Ej . Let t be the number of triples recorded in the creation
of ξ. Then Mξ(R) is the number of red labels we have seen that are not used in a
full triangle, and t counts the red labels that have been used in a triangle. Thus,
their sum is the total number of red labels we have seen. So we have

Kj(R) = t + Mξ(R)

Kj(G) = t + Mξ(G)

Kj(B) = t + Mξ(B).

This gives us

Mξ(B)−Mξ(R) = Kj(B)−Kj(R)

Mξ(G)−Mξ(R) = Kj(G)−Kj(R).

10

These two independent, linear relations imply that we can store the configura-
tions with only 10 components, giving us a O(n11) time algorithm. Note that we
can modify the O(n13) algorithm by removing two of its components and recalcu-
lating their value when needed, but each time we would create a new configuration
in the O(n13) version, we would create one in the O(n11) version as well. This
shows that the algorithm actually runs in O(n11) time.

6. Further Analysis

The analysis of the CTP algorithm described above is rather simple. Hence,
we attempted to provide a more thorough and accurate runtime bound. We went
about this in two majors ways: combinatorially and finding the worst case runtime.

From the original analysis, we know that the algorithm runs in O(nm), where m
is the maximum number of configurations examined by the algorithm for a given
point. Therefore, if we can find a bound for the number of configurations better
than O(n10), then we have improved on previous work.

The bound O(n10) comes from the fact that we can save the configurations as
10-tuples with O(n) possible values for each component. This simple analysis does
not take into account many limitations placed on the configurations, such as the
fact that the 10 values cannot sum to more than 3n. If we forget for a moment
the interpretations of each of the values in the 10-tuple, we can abstract this to
a combinatorial problem. We have 10 bins, and we have a total of 3n points to
distribute. More generally, we wish to determine the number of ways of distributing
x identical objects into y identical bins. We can think of this as having the x objects
in a line and placing y − 1 dividers between them like so

• • •| • | • • • | • •

The objects before the first divider go into the first bin, the objects between the
(i − 1)th and ith divider go into the ith bin. There are x + y − 1 symbols being
placed, and we are choosing y−1 of them to be dividers. Thus, the number of ways
to do this is

(

x + y − 1

y − 1

)

The number of ways the values of the components of a configuration can sum to
3n is given by

(

3n + 10− 1

10− 1

)

=
(3n + 9)!

(3n)!9!
= O(n9).

Each time a triple is encountered, we decrease certain components of a config-
uration. Thus, when examining the final point of the input, the components of a
configuration can sum to any value between 0 and 3n. Thus, this gives the bound

3n
∑

i=0

(

i + 10− 1

10− 1

)

.

Unfortunately, this is still O(n10). Thus, the simple restriction that the sum of
the components of the configurations must be less than or equal to 3n does not
provide an asymptotic improvement in the bounds.

The more promising approach we took to analyzing the CTP algorithm began as
empirical investigation. We wrote an implementation of the algorithm which kept

11

n n9 Actual Number
1 1 4
2 512 31
3 19683 227
4 262144 1290
5 1953125 4505
6 10077696 14989
7 40353607 39159
8 134217728 101941
9 387420489 225957

Table 2. A comparison of the actual number of configurations
with the growth of n9.

track of the number of configurations produced while examining an arrangement
of points, which were input as an ordered sequence of labels as described above.
We ran the program with every possible permutation of labels to see how close
the maximum number of configurations comes to the theoretical upper bound.
Unfortunately, the number of permutations grows quickly, and we could only do
this for small values of n. However, we discovered two interesting patterns.

First, the arrangement of points that produces the maximum number of configu-
rations seems to follow the same clear pattern, independent of the number of points.
In this pattern, the points alternate in color and sign. For n = 3, the arrangement
is

R+ G- B+ R- G+ B- R+ G- B+.

Intuitively this pattern makes sense. Each point the algorithm considers can
always be used as a singleton prefix, so we need not worry about those. We can
get up to two doubleton prefixes, but only if we have points of opposite color and
sign to work with. And we can get triples if there are enough pairs of points with
opposite color and sign that we have already examined. This pattern seems to
maximize the likelihood that each point will be able to be used as two doubletons
and a triple.

The second point to note is the number of configurations this pattern produces
compared to the theoretical bound. The chart in Table 2 shows the number of con-
figurations produced for the first few values of n, along with n9, which is asymptoti-
cally dominated by the theoretical bound on the number of configurations. Clearly,
the actual number of configurations generated is significantly smaller than n9, and
thus less than the theoretical bound. Moreover, the rate of growth (i.e. the ratio
of consecutive values) is significantly smaller for the actual number than for n9.

Assuming this pattern is the worst case scenario for the algorithm, this data sug-
gests that the trivial bound can be improved, perhaps significantly. Unfortunately,
proving that this pattern is the worst case scenario and finding an expression for
the number of configurations needed to examine this pattern are both still open
problems. These problems are complicated by the fact that repetitions are not
allowed in the set of configurations, which makes analysis quite difficult.

12

References

[1] P.K. Agarwal, M. Sharir, and E. Welzl, Algorithms for center and Tverberg points, Proc.

20th Symp. Computational Geometry, 2004, 61–67.
[2] M. de Berg, et al, Computational Geometry: Algorithms and Applications, Second Edition,

Springer Verlag, Heidelberg, 2000.
[3] R.L. Graham, An efficient algorithm for determining the convex hull of a finite planar set.

Inform. Process. Lett., 1972, 1:132–133.
[4] S. Jadhav and A. Mukhopadhyay, Computing a centerpoint of a finite planar set of points in

linear time, Discrete Computational Geometry 12, 1994, 291–312.
[5] J. Matoušek, Computing the center of a planar point set. Discrete and Computational Ge-

ometry, American Mathematical Society, 1991, 221–230.
[6] J. O’Rourke, Computational Geometry in C, Second Edition, Cambridge University Press,

1998.
[7] F.P. Preparata and S.J. Hong, Convex hulls of finite sets of points in two and three dimensions,

Commun. ACM, 1997, 20:87–93.

