
EUROGRAPHICS 2022/ J.-J. Bourdin and E. Paquette Education Paper

Mesh Smoothing for Teaching GLSL Programming

Ivaylo Ilinkin1

1Gettysburg College, USA

Abstract

This paper shares ideas for effective assignment that can be used to introduce a number of advanced GLSL concepts including

shader storage buffer objects, transform feedback, and compute shaders. The assignment is based on published research on

mesh smoothing which serves as a motivating factor and offers a sense of accomplishment.

CCS Concepts

• Computing methodologies → Computer graphics; Shape modeling;

1. Introduction

The modern graphics pipeline introduces a number of pedagog-
ical challenges. The amount of required code for a basic appli-
cation and the difficulties of conceptualizing the flow of pro-
gram execution can be quite overwhelming for the students. These
challenges and efforts to address them have been described in a
substantial body of recent research; see for example [FWW12,
RME14, AB15, PPGT14, BSP17, TRK17, ACFV18]. Effective as-
signments that introduce GLSL concepts in creative ways are pre-
sented in [FP18, Ili21].

The contribution of this paper is to share ideas for effective as-
signment that can be used to introduce a number of advanced GLSL
concepts including shader storage buffer objects, transform feed-

back, and compute shaders. The assignment is based on the work
of Vollmer et al. [VMM99] that describes algorithms for mesh
smoothing. The algorithmic ideas are fairly straightforward to un-
derstand and implement, so the paper provides an engaging context
for the GLSL concepts and does not detract from the main goals of
the assignment.

2. Assignment Brief

The assignment was used in a first course on computer graphics
for 3rd and 4th year students in a Bachelor’s program at a liberal
arts college in the US (four courses constitute a full-time load per
semester and class size is 10–16 students). The course had thirteen
weekly assignments (to be completed individually) and one exam.

This was a two-part assignment that was completed at the end
of the semester: Tasks 1 and 2 in Assignment 12, Tasks 3 and 4
in Assignment 13 (see Sections 2.3– 2.6). It was designed to intro-
duce advanced GLSL concepts after the students had already im-
plemented in a previous assignment a GLSL application that ren-
ders a 3D mesh with a simple lighting model and uniform variables
for rotation around the primary axes.

The assignment was introduced with this high level description:

The goal of this assignment is to implement the algorithms for

smoothing triangle meshes presented in the following paper:

Improved Laplacian Smoothing of Noisy Surface Meshes.

Vollmer, Mencl, and Müller. Computer Graphics Forum ’99.

The focus is on Sections 3 and 4. Skim through Sections 1 and 2.

This assignment is designed around the following topics:

• shader storage buffer objects

• transform feedback

• compute shaders

The introduction was followed by detailed explanations of the
individual tasks as described in the rest of the paper.

2.1. Algorithms Overview

This section summarizes briefly the algorithmic aspects presented
in [VMM99] that are relevant for the implementation tasks in the
assignment.

Each iteration of the smoothing algorithm transforms the current
vertex position, p′i , into the next vertex position, p′′i , according to
one of the following choices:

p
′′

i =
1
ni

∑
j∈Ji

p
′

j (1)

p
′′

i =
1−α

ni
∑
j∈Ji

p
′

j +αp
′

i (2)

p
′′

i =
1−α

ni
∑
j∈Ji

p
′

j +αpi (3)

c© 2022 The Author(s)
Eurographics Proceedings c© 2022 The Eurographics Association.

https://orcid.org/0000-0002-0723-637X

Ilinkin / Mesh Smoothing for GLSL

where α ∈ [0..1] is a weight factor and ni, pi, Ji are respectively the
degree, original position, and adjacent indices for vertex i.

Algorithm 1 simply updates each vertex position as the average
of its neighbors, while Algorithms 2 and 3 also add the current
and original position, respectively, as pull anchor. The pull aims
to counteract a shrinkage effect that is observed when using Algo-
rithm 1 — the mesh gradually shrinks and in the limit converges to
a point (Figure 2).

2.2. Data Representation

This section gives an overview of the data representation and setup
of the shader program. The mesh data is stored in a file with cus-
tom format designed to be easy to read. It is shown here only as a
reference, but other standard options could be used instead:

vertices N // number of vertices

...

v i // vertex index

p x y z // position

n x y x // smooth normal

c r g b // color

a n j0 j1 ... jn-1 // indices of n adjacent

...

The mesh data is sent for processing via the standard setup with
vertex buffer object (vbo) and vertex array object (vao). Thus, each
vertex shader has access to the original vertex position (needed in
Algorithm 3) and the adjacency information (needed in all algo-
rithms).

Section 2.1 suggests that three buffers are needed for the po-

sition data: original, current, and updated. The original positions
are communicated via vbo+vao while the other two are set up via
shader storage buffer objects (ssbo). The first ssbo provides the ver-
tex shader with random access to the current positions of the adja-
cent vertices and the second ssbo eliminates the need for synchro-
nization within the shader since the updated positions are stored in
a separate buffer.

Finally, a separate buffer of indices is needed to store the adja-
cency lists. Since the vertices have different number of neighbors
that information cannot be communicated via the vbo. Instead, in
our implementation all adjacency lists are stored sequentially into
a read-only adjacent ssbo. Thus, each vertex only needs to store
two indices, a0 and a1, that indicate where its adjacency list begins
and ends within the adjacent buffer. These two indices are sent via
the vbo to the vertex shader and together with the adjacent buffer
provide access to the data.

Figure 1 provides a conceptual diagram that illustrates the above
ideas.

2.3. Task 1: Smooth Normals

The first task in the assignment is designed to introduce the students
to the data representation (the adjacency structure, in particular)
and the general setup of ssbos. At this stage the students are only
asked to recompute the smooth normals at the vertices using the
simple strategy of adding the flat normals of the adjacent faces.
This task introduces ssbos since it requires access to the adjacency

lists and the current coordinates of the neighbors. The initialization
step of setting up vbo+vao is extended with code for requesting and
loading the new buffers. Separately, the new buffers are attached
to the vertex shader. Finally, a function that computes the smooth
normal is implemented in the vertex shader.

This intermediate task is not required for the smoothing algo-
rithms but is included for the following reasons:

• The students can focus on a task they are familiar with and defer
reading the paper.

• The key step in both the smoothing algorithms and the normal
computation is the ability to work with the adjacency lists which
is represented by the summation terms in Algorithms 1–3.

• It is easier to verify correctness of the implementation and gain
confidence for the later tasks since the computed normals should
produce a visual effect similar to the supplied smooth normals.
The result is not identical since the supplied normals are com-
puted with different algorithms.

In fact, computing the normals is slightly more complicated than
the smoothing algorithms (one has to process pairs of neighbors
with wraparound), but much of the code can be reused in later
stages.

2.4. Task 2: Algorithm 1 and Transform Feedback

At this point the students have a good understanding of the data
representation and adjacency list processing. Adapting the code
from Section 2.3 to implement a function for Algorithm 1 is now
straightforward.

The main focus of this task is to guide the students in setting
up transform feedback with an associated updated buffer and with
specification of variables to record. An out variable is added to the
vertex shader that represents the new position of its associated ver-
tex (p′′i in Algorithms 1–3). As with other aspects of working with
the modern pipeline, setting up transform feedback is a matter of
following a recipe of function calls with their correct placement.

The updated vertex positions recorded by the transform feedback

become current positions for the next rendering cycle by exchang-
ing the roles of the current and updated buffer.

2.5. Task 3: Algorithm 2 and 3

This is a simple extension of Task 2. It involves implementation of
two new functions for Algorithms 2 and 3 which are minor varia-
tions on Algorithm 1. This fairly effortless task offers the satisfac-
tion of having three different algorithms that can be compared on a
variety of meshes.

In terms of GLSL content, this task reinforces (or introduces)
uniform variables for representing the parameter α. Instructors
could also consider introducing shader subroutines for selecting
which algorithm to run during the rendering cycles.

2.6. Task 4: Algorithm 4, Compute Shader

Algorithm 4 is discussed separately in this section. While most of
the elements in Algorithm 4 will already be familiar to the stu-

c© 2022 The Author(s)
Eurographics Proceedings c© 2022 The Eurographics Association.

Ilinkin / Mesh Smoothing for GLSL

dents, its structure requires a different approach that in the context
of GLSL invites consideration of compute shaders.

Here is a sketch of the main ideas:

foreach vertex i: 1st pass

bi =
1
ni

∑ j∈Ji
p′

j − (αpi +(1−α)p′

i)

foreach vertex i: 2nd pass

p′′

i = 1
ni

∑ j∈Ji
p′

j − (βbi +
1−β

ni
∑ j∈Ji

b j)

The main difference is that this is a two-pass algorithm. The first
pass computes more sophisticated pull anchors denoted bi based
on the current positions. The second pass computes the updated

positions by including the pull anchors.

The two-pass structure does not allow direct implementation in
the vertex shader since the first pass must complete before the final
positions can be computed. This offers an opportunity to introduce
compute shader as a preprocessing stage that implements the first
pass using three buffers only the last of which is new — adjacency

lists, current positions, and pull anchors. The pull anchors are also
attached to the vertex shader, so that after the compute shader pass
concludes, their values can be used to update the vertex positions.

The appealing aspect of this task is that the implementation de-
tails for both passes in Algorithm 4 are minor variations on pre-
vious functionality. The modification of the vertex shader is fairly
minimal and involves implementation of a new function for updat-
ing the vertex positions that is similar to the functions for Algo-
rithms 1–3. This allows the students to focus on the details of set-
ting up a compute shader that is executed as a separate shader pro-
gram. In our implementation we used a simple linear arrangement
for work groups, i.e. (X = |V |,Y = 1,Z = 1), and local size of 1, i.e.
(x = 1,y = 1, z = 1). This simplifies the reasoning about the flow
of computation and indexing for each shader invocation reduces
to using i = gl_GlobalInvocationID[0]. As an exercise instructors
can vary work groups and local size to build intuition about their
relationship and prepare the students for applications of compute
shaders in other domains.

2.7. Discussion

Figure 2 shows representative images from a student submission
for smoothing a mesh with three of the algorithms.

Algorithm 1 leads to substantial smoothing, but it suffers consid-
erably from shrinkage effect. Algorithm 2 produces similar result.

Algorithm 3 uses the original positions as pull anchors which
counteracts the shrinking effect at the expense of smoothing qual-
ity. This is controlled by the parameter α: α = 0 degenerates Al-
gorithm 3 into Algorithm 1; α = 1 fixes the output to the original
mesh.

Algorithm 4 uses more sophisticated pull anchors to balance the
tradeoff between shrinkage and smoothing quality. As can be seen
in Figure 2 Algorithm 3 is not free from shrinkage.

Algorithms 3 and 4 can be shown to converge. For the example in
Figure 2 and choice of parameters the convergence is fairly quick.
The progression of the algorithms can be appreciated better in the
accompanying video.

3. Conclusions

This paper presented ideas for effective assignment based on the
work of Vollmer et al. [VMM99] that can be used to introduce
a number of GLSL concepts, including shader storage buffer ob-

jects, transform feedback, and compute shaders. The appealing as-
pect of [VMM99] that makes it possible to serve as the basis for a
course assignment is that the algorithmic ideas are fairly straight-
forward to understand and implement. This enables the students to
focus on the complexities of GLSL concepts and thus strengthens
their understanding. The fact that the assignment is based on pub-
lished research further serves as a motivating factor and provides a
sense of accomplishment.

4. Acknowledgements

The images and accompanying video are based on the assignment
submission of Doug Harsha.

References

[AB15] ACKERMANN P., BACH T.: Redesign of an Introductory Com-
puter Graphics Course. In EG 2015 - Education Papers (2015),
Bronstein M., Teschner M., (Eds.), The Eurographics Association.
doi:10.2312/eged.20151021. 1

[ACFV18] ANDUJAR C., CHICA A., FAIRÉN M., VINACUA A.: GL-
Socket: A CG Plugin-based Framework for Teaching and Assessment.
In EG 2018 - Education Papers (2018), Post F., Žára J., (Eds.), The Eu-
rographics Association. doi:10.2312/eged.20181003. 1

[BSP17] BÜRGISSER B., STEINER D., PAJAROLA R.: bRenderer: A
Flexible Basis for a Modern Computer Graphics Curriculum. In EG

2017 - Education Papers (2017), Bourdin J.-J., Shesh A., (Eds.), The
Eurographics Association. doi:10.2312/eged.20171023. 1

[FP18] FOURQUET E., PENTECOST L.: A Creative First Assign-
ment in the Modern Graphics Pipeline. In EG 2018 - Education Pa-

pers (2018), Post F., Žára J., (Eds.), The Eurographics Association.
doi:10.2312/eged.20181006. 1

[FWW12] FINK H., WEBER T., WIMMER M.: Teaching a
Modern Graphics Pipeline Using a Shader-based Software
Renderer. In Eurographics 2012 - Education Papers (2012),
Gallo G., Santos B. S., (Eds.), The Eurographics Association.
doi:10.2312/conf/EG2012/education/073-080. 1

[Ili21] ILINKIN I.: Marching Cubes for Teaching GLSL Pro-
gramming. In Eurographics 2021 - Education Papers (2021),
Sousa Santos B., Domik G., (Eds.), The Eurographics Association.
doi:10.2312/eged.20211008. 1

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSIDOU

E., TRAHANIAS P.: glGA: an OpenGL Geometric Application
Framework for a Modern, Shader-based Computer Graphics Curricu-
lum. In Eurographics 2014 - Education Papers (2014), Bourdin
J.-J., Jorge J., Anderson E., (Eds.), The Eurographics Association.
doi:10.2312/eged.20141026. 1

[RME14] REINA G., MÜLLER T., ERTL T.: Incorporating modern
opengl into computer graphics education. IEEE Computer Graphics and

Applications 34, 4 (2014), 16–21. doi:10.1109/MCG.2014.69. 1

[TRK17] TOISOUL A., RUECKERT D., KAINZ B.: Accessible
GLSL Shader Programming. In EG 2017 - Education Papers

(2017), Bourdin J.-J., Shesh A., (Eds.), The Eurographics Association.
doi:10.2312/eged.20171024. 1

[VMM99] VOLLMER J., MENCL R., MÜLLER H.: Improved Laplacian
Smoothing of Noisy Surface Meshes. Computer Graphics Forum (1999).
doi:10.1111/1467-8659.00334. 1, 3

c© 2022 The Author(s)
Eurographics Proceedings c© 2022 The Eurographics Association.

https://doi.org/10.2312/eged.20151021
https://doi.org/10.2312/eged.20181003
https://doi.org/10.2312/eged.20171023
https://doi.org/10.2312/eged.20181006
https://doi.org/10.2312/conf/EG2012/education/073-080
https://doi.org/10.2312/eged.20211008
https://doi.org/10.2312/eged.20141026
https://doi.org/10.1109/MCG.2014.69
https://doi.org/10.2312/eged.20171024
https://doi.org/10.1111/1467-8659.00334

Ilinkin / Mesh Smoothing for GLSL

Figure 1: Left: Original Mesh. Right: Vertex representation and a sketch of vertex shader setup with the various buffers.

Algorithm 1 Algorithm 3 Algorithm 4

Figure 2: Representative images based on a student submission for α = 0.1 and β = 0.2 for the mesh shown in Figure 1. The top row shows 5

iterations of each algorithm, while the bottom row shows 100, 30, and 10 iterations, respectively (note that Algorithms 3 and 4 have achieved

convergence at this level). Algorithm 2 is not shown since it produces similar effect as Algorithm 1.

c© 2022 The Author(s)
Eurographics Proceedings c© 2022 The Eurographics Association.

