
EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

Experimental Evaluation of Parametric Search Algorithms

Ivaylo Ilinkin∗

Abstract

This paper provides an experimental report on im-
plementation of parametric search algorithms. The
algorithms are due to Matoušek and Cole et al. and
answer the following questions about an arrangement
of n lines: (a) compute a tangent to the k-level with
a given direction d; (b) compute a tangent to the k-
level through a given point p; and (c) compute the
k-th vertex in the arrangement. The implementa-
tions are based on the framework of van Oostrum and
Veltkamp, which simplifies considerably the develop-
ment of parametric search algorithms.

1 Introduction

Parametric search is an optimization technique that
has been used to obtain efficient algorithms for a wide
range of problems [5]. In the parametric search setting
one considers a decision problem, P (λ), that is mono-
tone in a real-valued parameter λ, i.e. if P (λ′) = T ,
then P (λ) = T for λ < λ′. The goal is to find the
largest value, λ∗, for which P (λ) = T . During its ex-
ecution a parametric search algorithm maintains an
interval, (λlo, λup), where λ∗ lies. This interval is re-
fined repeatedly by updating one of the bounds until
λ∗ is discovered as one of the intermediate computa-
tions, or the interval is small enough that λ∗ can be
computed directly.

Despite its successful applications to a number of
problems, parametric search algorithms are consid-
ered difficult to implement, and therefore, the tech-
nique has been primarily of theoretical interest. In-
deed, until recently the only reported implementa-
tions of parametric search algorithms were by Schw-
erdt et al. [6] and Toledo [7]. Interest in the practical
aspects of parametric search was renewed with the
work of van Oostrum and Veltkamp [8] and more re-
cently with the work of Goodrich and Pszona [3].

This paper discusses the implementation of the
following algorithms due to Matoušek [4] and
Cole et al. [2], respectively. Given a set of n lines:

Algorithm 1 [4]: Compute a tangent with a given
direction, d, to the k-level in the arrangement.

∗Department of Computer Science, Gettysburg College,

iilinkin@gettysburg.edu

Algorithm 2 [4]: Compute a tangent through a given
point, p, to the k-level in the arrangement.

Algorithm 3 [2]: Compute the k-th vertex in the
arrangement.

Note that the implementations discussed in this pa-
per have an extra O(log n) factor, since the frame-
work of van Oostrum and Veltkamp does not include
Cole’s technique [1]. Future work will consider adapt-
ing the implementations to the framework of Goodrich
and Pszona [3], which has expected running time that
matches Cole’s improvement.

2 Parametric Search Framework

The framework of van Oostrum and Veltkamp [8]
simplifies considerably the task of implementing
parametric search algorithms by requiring that the
user provide only a small number of classes:

Polynomials class: This is a representation of the
objects that are compared during the search. Here
the polynomials are the given lines. The outcome
of the comparison depends on a critical value, λij ,
defined by the polynomials ℓi and ℓj.

Comparison class: This compares two polynomials
at the unknown value λ∗. The framework collects
independent comparisons in a single batch to be
resolved efficiently later once the answers for the
associated critical values, λij , are known.

Solver class: This solves the decision problem, P (λ),
for any concrete value, λ, which effectively answers
whether λ < λ∗, λ = λ∗, or λ > λ∗. This is an
expensive computation and the framework ensures
that a number of decision questions are answered
together in binary search fashion exploiting the
monotonicity property.

For sorting-based parametric search the framework
offers an implementation of quick sort based on the
observation that it allows for convenient batching of
comparisons. To this end, quick sort is modified so
that during the partition step it first computes, for
each comparison of two polynomials, the critical value
λ that determines the outcome of the comparison, but
does not evaluate the decision problem, P (λ), yet.



30th European Workshop on Computational Geometry, 2014

Instead, the decision problem is answered for the me-
dian of the critical values and this single expensive
comparison computation makes it possible to deduce
the answer for half of the comparisons. Therefore, all
of the O(n) comparisons during the partition step can
be answered using only O(log n) expensive evaluations
of the decision problem. Thus, the running time per
level in quick sort is O(TS logn), or O(TS log2 n) for
the entire sort over the O(log n) expected levels, where
TS is the time for the Solver to answer the decision
problem at any concrete value λ.
In essence, the framework abstracts the low-level

decisions about coordinating the interactions between
the Solver and the Comparison classes, which typi-
cally has been the challenge in implementing para-
metric search algorithms. Now, one can focus only on
the high-level aspects of the problem — implementing
an algorithm for the decision problem and a compar-
ison predicate for two polynomials.

3 Algorithm 1

Recall that Algorithm 1 seeks to find a tangent with a
given direction, d, to the k-level in the arrangement of
n lines. This algorithm is mentioned only in passing
in [4], so we provide the details here for completeness.
Its simplicity makes it a good candidate for illustrat-
ing parametric search and the use of the framework.
The main idea behind the algorithm is to sort the

given lines along the unknown tangent τ∗. While it
may seems strange to attempt to sort along the object
we are trying to find, nevertheless, if this sorted order
were somehow available, then the vertex at which τ∗

touches the k-level will be determined by two adjacent
lines. In fact, even though τ∗ is not known, the order
of two lines, ℓi and ℓj, along τ∗ can be determined if
it is known whether their intersection, rij , lies above
or below τ∗.
The following two procedures aid in solving the

overall problem [4]:

Procedure 1: Given a line q, the vertices of the k-level

lying on q can be found in time O(n logn).

Procedure 1 works by intersecting q with the given
lines and sorting the intersections. The level of the
left-most intersection is computed directly and the
levels of the subsequent intersections are computed
via a scan along q updating each level by ±1 as lines
go above/below q The running time is dominated by
the time to sort the intersections.

Procedure 2: The order of two lines, ℓi and ℓj,

along τ∗ can be determined in O(1) time assum-
ing that it is known whether rij lies above or below τ∗.

Procedure 2 relies on the observation that since the

direction for τ∗ is fixed, the order of ℓi and ℓj changes
only when rij is crossed. Thus, if rij lies below τ∗, we
can intersect ℓi and ℓj with any line with direction d

that is above rij and infer their order along τ∗.
The decision problem, P (y), that guides the sort is:

Does the line with direction d and height y intersect

the k-level?. Notice that the decision problem exhibits
the monotonicity property, since as we sweep a line
with direction d along the y-axis, the answer is P (y) =
T for all y ≤ y∗, where y∗ is the height of τ∗.
Consider a question about the relative order of ℓi

and ℓj along τ∗. Form the critical line, τij , through
rij with direction d— if τij intersects the k-level, then
τij is below τ∗ and needs to be raised, i.e. yij < y∗;
otherwise, if τij misses the k-level, then it is above
τ∗ and needs to be lowered, i.e. yij > y∗. Thus, the
answer to the decision problem, P (yij), answers yij ≶
y∗, which also answers whether rij is above/below τ∗.
The decision problem can be answered using Proce-

dure 1, which makes it possible to use Procedure 2 to
determine the order of ℓi and ℓj along τ∗. Notice that
Procedure 1 and Procedure 2 correspond to the Solver
and Comparison classes, respectively, in the frame-
work. Since the Solver’s running time is O(n log n),
the running time of Algorithm 1 is O(n log3 n).
Finally, we highlight the genericity of the frame-

work and the style of programming that it offers.
Conceptually, one can view the quick sort algorithm
offered by the framework as an STL-like quick sort.
In fact, the original problem could be solved using an
STL-like quick sort— the lines will be sorted correctly
along τ∗, despite the fact that τ∗ is not known:

bool comp(const Line& l1, const Line& l2)

{

Point r = intersection(l1, l2);

result_t side = Procedure_1(r);

if (side == ON) { abort(); }

return Procedure_2(l1, l2, side);

}

std::quick_sort(lines.begin(), lines.end(),

comp);

Of course, this is an inefficient way of solving the
problem, since each comparison takes O(n log n) time
for Procedure 1 for an overall O(n2 log2 n) time over
the O(n log n) comparisons. Nevertheless, it can be
helpful to cast the solution in this form, since it ig-
nores the low-level details of parametric search. With-
out the framework we would have to worry about
those details next; instead, we can simply write:

vov::quick_sort(lines.begin(), lines.end(),

Procedure1, Procedure2);

The above is a simplification and used only as a
conceptual illustration. The actual code for setting



EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

Table 1: Results for Algorithm 1 (times in millisecs).
n 100 200 400 800 1000 10000

k = 1 4.9 11.0 24.7 59.2 78.1 2188
k = n

8 4.9 10.9 24.3 57.1 78.5 1997

k = 2n
8 4.7 10.6 25.6 59.1 77.3 2156

k = 3n
8 4.6 10.6 24.8 61.5 82.6 2372

up the call to quick sort has a few more steps that are
fairly routine. The main effort in using the framework
is in implementing Procedure1 and Procedure2, i.e. the
Solver and Comparison classes, respectively.

Table 1 presents the execution times for different
values of n and k. The experiments were run on a
MacBook Pro with a 2.7 GHz Intel Core i7 processor
and 8GB of RAM in a virtual machine running Linux
Mint 15. The lines in each test case form a trellis
configuration that is perturbed slightly, so that no
two lines are parallel and each pair of lines intersects.
(The algorithms are implemented to handle parallel
lines, but these represent easy cases, and are not in-
cluded in the experiments.) For each (n, k) pair in
Table 1 the algorithm was run with 10 directions and
each run was repeated 50 times averaging the results
over all directions and trials. (Since the framework’s
implementation of quick sort randomizes the input to
avoid unfavorable configurations, identical runs of Al-
gorithm 1 will have different actual running times.)

Note that the value k does not have appreciable
effect on the running time, since ultimately the algo-
rithm must sort the given n lines along τ∗ regardless
of the level of interest. The algorithm terminates pre-
maturely if it happens to compare the lines ℓi and ℓj
that define the vertex at which τ∗ touches the k-level,
which depends only on the initial ordering of the lines.

4 Algorithm 2

This algorithm seeks to find a tangent through a given
point p to the k-level in the arrangement of n lines.
The algorithm actually computes a tangent ray to the
right of p and at the end ensures that its supporting
line does not intersect the k-level using Procedure 1.

Again, the algorithm works by sorting the lines
along the unknown tangent τ∗, but the decision prob-
lem, P (τ), that guides the sort is: Does the line

through p with the given slope, τ , intersect the k-level?

(τ will be used interchangeably to mean a line and its
slope). This decision problem also exhibits the mono-
tonicity property, since as we rotate a line τ around
p, the answer P (τ) = T for all τ ≤ τ∗.

To determine the order of two lines, ℓi and ℓj , along
the unknown tangent τ∗, we form a critical line, τij ,
through p and the intersection rij of ℓi and ℓj . If τij
intersects the k-level (to the right of p), then it needs
to be rotated up around p, i.e. τij < τ∗, which also

Table 2: Results for Algorithm 2 (times in millisecs).
n 100 200 400 800 1000 10000

k = 1 8.1 16.3 34.6 75.9 101.6 1806
k = n

8 8.0 15.7 33.9 76.8 101.6 1850

k = 2n
8 7.3 15.6 33.7 77.5 101.0 1855

k = 3n
8 7.0 15.4 34.3 78.5 102.7 1889

implies that rij is below τ∗; otherwise, if τij misses
the k-level, it needs to be rotated down, i.e. τij > τ∗

which also means that rij is above τ∗.
Unlike Algorithm 1, however, knowing the position

of rij relative to τ∗ is not enough to determine the
order of ℓi and ℓj along τ∗ — it is also necessary to
know the relative order of the slopes of τ∗, ℓi, and
ℓj. The following procedure can be used to find the
range (τlo, τup) where τ∗ lies.

Procedure 3: The range of slopes (τlo, τup) for τ∗ in

Algorithm 2 can be found in time O(n log2 n).

Procedure 3 works by creating n lines through p

with the slopes of the given lines, sorting them by
increasing slope, and performing binary search. If
the line with the median slope intersects the k-level,
the lines with smaller slopes can be eliminated from
consideration and τlo can be updated; otherwise, the
other half of the lines can be eliminated and τup can
be updated. There are O(log n) applications of Pro-
cedure 1 resulting in O(n log2 n) overall run time.
We can pick a fixed slope in the range (τlo, τup) and

use it to form a test line through p. The order of ℓi
and ℓj along the test line will be the same as the order
along τ∗ (as if it were rotated by a small amount).
The running time of Algorithm 2 is the same as that

of Algorithm 1. Procedure 1 is again used as the Solver
and Procedure 2 as the Comparison. Procedure 3 is
run only once before the algorithm, so its run time is
dominated by the overall run time of O(n log3 n).
Table 2 shows the results for the same configura-

tions as in Algorithm 1, but 10 points are chosen, in-
stead of 10 directions, per test configuration.

5 Algorithm 3

The last algorithm considered in the paper seeks to
find the k-th vertex in an arrangement of n lines. An
optimal solution using parametric search and an ap-
proximation idea was given by Cole et al. [2], who also
gave a sub-optimal, but less complicated, algorithm
that relies only on parametric search. The latter al-
gorithm is considered here.
The algorithm works by sorting the given lines at

the vertical line, τ∗, through the unknown vertex, r∗.
Again, we need to define two procedures that aid in
determining the relative order of two lines ℓi and ℓj



30th European Workshop on Computational Geometry, 2014

along τ∗. The Comparison procedure uses the fact
that as the arrangement is swept from left to right
with a vertical line, τ , each pair of lines ℓi and ℓj
changes its order along τ only at the pair’s intersec-
tion, rij . Thus, the order of ℓi and ℓj along τ∗ can
be determined if it is known whether rij is left/right
of τ∗ — if rij is to the left of τ∗, then the line with
the smaller slope comes first in the sorted order; oth-
erwise, the line with the larger slope comes first.
In general, after the k′-th vertex, exactly k′ pairs

have switched their order along τ , i.e. there are ex-
actly k′ inversions. We define a decision problem
P (x): Does the sorted order along the vertical line at

x have fewer than k inversions? and seek the largest
value, x∗, for which P (x) = T . Once the sort is com-
plete, the desired vertex, r∗, is the intersection of two
adjacent lines along the vertical line at x∗.
The Solver procedure for the decision problem can

be implemented using a modified version ofmerge sort

which counts the elements that are out of order during
the merge step. The Solver can be used to answer
P (xij), i.e. xij ≶ x∗, which answers whether rij is
left/right of τ∗, and therefore, the Comparison can
determine the order of ℓi and ℓj along τ∗. Since the
Solver runs in O(n log n), the overall algorithms has
O(n log3 n) running time.
Table 3 shows the results for the same configura-

tions as in Algorithm 1. The times shown for each
configuration represent searching for the first, last,
and middle vertex in the arrangement, as well as the
vertices that are one third away from either end (each
search averaged over 50 trials). Unlike the previous
algorithms, where the value of k does not have appre-
ciable effect on the results, here the worst-case occurs
when searching for the vertices at the extremes and
the best case is when searching for the middle vertex.

Table 3: Results for Algorithm 3 (times in millisecs;

N = n(n−1)
2 number of vertices in the arrangement).

n 100 200 400 800 1000 10000
k = 1 2.0 4.6 11.2 25.8 34.4 752.6

k = N
3 1.8 3.4 8.2 18.8 27.2 452.6

k = N
2 0.4 0.8 2.2 4.6 6.0 131.0

k = 2N
3 1.6 4.0 8.0 19.6 24.2 454.6

k = N 1.8 3.6 10.4 23.4 30.6 729.0

6 Conclusion

This paper has presented an experimental evaluation
of parametric search algorithms and a discussion of
their high-level implementation using the framework
of van Oostrum and Veltkamp [8]. Long considered to
be only of theoretical interest, parametric search has
seen renewed attention with the work of van Oostrum
and Veltkamp [8] and Goodrich and Pszona [3]. This

paper provides further evidence about the practical
aspects of parametric search and the hope is that it
could inspire other experimental work to validate the
applications of the technique.
The framework of van Oostrum and Veltkamp [8]

simplifies considerably the implementation of para-
metric search algorithms. The framework hides the
complexity of synchronizing the flow of control and
lets the user focus on the high-level aspects of the
problem. While the algorithms discussed here have
an extra log factor, since they do not benefit from
Cole’s technique [1], it is likely that the impact on
the actual execution time may not be significant, since
there are no hidden constants and complexities that
accompany more refined techniques. For example, the
implementation of Algorithm 3 essentially relies on
two standard algorithms— the framework’s quick sort
and the modified merge sort for counting the number
of inversions. Similarly, instead of merge sort, Algo-
rithms 1 and 2 use a procedure for intersecting a set
of lines, which has a straightforward implementation.
In future work we plan to adapt the implementa-

tions to the framework proposed in [3] to remove the
extra O(log n) factor in the current implementations.
We are also working on an implementation of Ma-
toušek’s algorithm for computing the center of planar
point sets, which uses multiple applications of para-
metric search including the algorithms discussed here.

References

[1] R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms. J. ACM, 34(1):200–208, Jan.
1987.

[2] R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemerédi.
An optimal-time algorithm for slope selection. SIAM

J. Comput., 18(4):792–810, Aug. 1989.

[3] M. Goodrich and P. Pszona. Cole’s parametric search
technique made practical. In Proc. 25th Canadian

Conf. Comput. Geom., CCCG ’13, pages 181–186,
2013.

[4] J. Matoušek. Computing the center of planar point
sets. Comput. Geom.: Papers from the DIMACS Spe-

cial Year, pages 221–230, 1991.

[5] N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM,
30(4):852–865, Oct. 1983.

[6] J. Schwerdt, M. Smid, and S. Schirra. Computing the
minimum diameter for moving points: an exact im-
plementation using parametric search. In Proc. 13th

Annu. ACM Symp. Comput. Geom., SCG ’97, pages
466–468, New York, NY, USA, 1997. ACM.

[7] S. Toledo. Extremal polygon containment problems
and other issues in parametric searching. Master’s the-
sis, Tel Aviv Univ., 1991.

[8] R. van Oostrum and R. Veltkamp. Parametric search
made practical. Comput. Geom. Theory Appl., 28(2-
3):75–88, June 2004.


