
Variations on "From Nand to Tetris" with Logisim and ARM
Ivaylo Ilinkin

iilinkin@gettysburg.edu
Gettysburg College
Gettysburg, PA, USA

ABSTRACT
This paper shares experience with using Logisim to complement
the hardware specification approach and accompanying simula-
tor for the projects in "From Nand to Tetris" (N2T; Shocken et al.,
SIGCSE’09). Student feedback indicates that Logisim enhances the
visualization of the main concepts and can be used effectively in
parallel with the framework developed in N2T. This is achieved
via an external Logisim library implemented by the authors that
extends the rich set of components available in Logisim with the
specialized circuits required in N2T (e.g ALU, CPU, Screen, Key-
board). Upon completing the projects the students are able to exe-
cute the same machine code for a Pong-like game on their Logisim
and N2T computers.

CCS CONCEPTS
• Computer systems organization;

KEYWORDS
Nand to Tetris, Logisim, hardware description language, ARM as-
sembly
ACM Reference Format:
Ivaylo Ilinkin. 2023. Variations on "From Nand to Tetris" with Logisim and
ARM. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1 (ITiCSE 2023), July 8–12, 2023, Turku,
Finland. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3587102.3588858

1 INTRODUCTION
From Nand to Tetris (N2T) is the title of a popular course based
on the book The Elements of Computing Systems [9] whose concep-
tual framework is described in [12–14]. Carefully designed abstrac-
tions and support software guide the students through the stages
of building a computer system from scratch (the Hack Computer)
including both the hardware circuitry as well as the software lay-
ers of an operating system and programming environment. N2T
is an ambitious project that takes the students on a tour of much
of the fundamental knowledge in computers science. The first six
chapters start from the elementary gates and progress through the
complete design of a computer, illustrating along the way the con-
cepts of machine and assembly programming by connecting them

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588858

directly to the hardware specifications of the computer the stu-
dents have built from scratch. The remaining six chapters lay the
software foundation that would, in principle, enable the students
to build the promised Tetris game. Here the students are guided
towards building a virtual machine, a compiler for a high-level lan-
guage, and an operating system layer. For instructors of computer
organization the first six chapters will be of primary interest and
this is the focus of the paper. For the complete details we refer the
reader to [9, 12–14].

This paper shares experience with using the N2T approach as
part of a one-semester course on computer organization. Since our
course has additional demands (including introduction to C/C++)
we cover only the first half of N2T, i.e. the hardware platform
and assembly language programming, which comprise the first six
chapters. The N2T treatment of assembly language is based on
their artificial Hack Assembly, which we supplement with intro-
duction to ARM Assembly. The projects described here are based
on N2T with variations introduced in our course. The projects can
be completed during one half to two thirds of a regular semester
depending on instructor preference and organization.

2 CONTRIBUTION
The main contribution of this work is a discussion of parallel de-
velopment of a hardware platform both in the simulation environ-
ment of N2T as well as in the digital logic simulator Logisim [4].
N2T offers a wide array of support software including a Hardware
Simulator, but unfortunately the development of the Hack Com-
puter is achieved exclusively via a Hardware Description Language
(HDL) designed by the authors of N2T. Thus, both the construction
of the hardware platform and the visualization of the signal prop-
agation during circuit operation lack the tangible effect produced
by a digital circuit simulator such as Logisim.

Both approaches to circuit design and implementation offer ben-
efits and strengths. Students should be exposed to a high-level
hardware specification notation and N2T meets this goal success-
fully. At the same time, our observation is that a digital logic sim-
ulator helps the students conceptualize the work by making the
design and visualization more concrete. This observation is sup-
ported by course feedback discussed in Section 8.

Logisim already has a rich set of components including many of
the ones used in N2T. Our second contribution is the development
of a Logisim library for the missing components (e.g ALU, CPU,
Screen, Keyboard) so that the students can specify the Hack Com-
puter in HDL or design it as interconnected digital components in
Logisim. Having a complete set of working components is impor-
tant for two reasons: the pedagogical reason is to allow the stu-
dents to make progress even if their implementation at an earlier
stage was incomplete; the practical reason is to ensure that the
simulation runs at an acceptable rate (the components provided

ITiCSE 2023, July 8–12, 2023, Turku, Finland Ivaylo Ilinkin

for both N2T and Logisim are implemented differently from what
the students are expected to submit).

Two other contributions of this work are the implementation of
non-trivial and engaging programs for testing the Hack Computer
and ideas for integrating ARM Assembly in the N2T projects.

The assignmentwrite-ups, support librarynand2tetris, andHack
Assembly programs (including any future updates) will be available
through our course website.

3 RELATEDWORK
Our approach ismotivated by evidence established in prior research
that the study of computer organization is greatly facilitated by
good visualization tools. These tend to fall in two categories. Hard-
ware Emulators offer a high-level view of a particular computer ar-
chitecture with data path visualization during program execution.
Some examples include the CPUEmulator from theN2T project [9],
MarieSim [10], Emumaker86 [2], and the x86 simulator in [3]. Logic
Simulators are designed for exploration at the lower level, start-
ing with the basic gates and combining them into components of
increasing complexity that can culminate in an implementation
of a complete computer architecture. Some examples include Lo-
gisim [4], DLSim 3 [5], and JLS [11].

Stanley et al. [16, 17] report positive learning outcomes in teach-
ing computer architecture using a logic simulator to realize a par-
ticular computer design. Schuurman [15] describes a sequence of
assignments that lead to the implementation of a computer archi-
tecture and thus shares ideas with N2T and the approach described
here.

The list of visualization software is not exhaustive but it shows
the interest over the years in creating pedagogical tools to support
teaching of computer organization concepts. We chose Logisim
since it combines an intuitive interface, a good set of features and
components, and a plug-in option for further extensions. Logisim’s
success as a pedagogical tool is evident through the open-source
project Logisim-evolution [6] with contributions from a number of
academic institutions.

4 HARDWARE PROJECTS
Projects 1, 2, 3, and 5 in N2T introduce the circuits and the design
of the computer architecture. Upon completion of Project 5 the stu-
dents have built a working computer on which they can execute
programs provided in the N2T resources or developed as part of
the software projects. In our course the students could run the pro-
grams both on the HDL-specified computer in the Hardware Sim-
ulator offered by N2T as well as on the computer built in Logisim.

This section provides a brief description of the hardware projects.
The complete details can be found in the N2T book [9] and the
accompanying website. Each project could be completed in one
week, but in our course some projects are split since we add the
additional requirement to implement the circuits in Logisim. Occa-
sionally, the projects have both a hardware and a software portion.
The presentation here follows the sequence and organization in
our course as outlined in Table 1.

4.1 Project 1: Elementary logic gates
The requirement is to build And,Or,Not,Xor and 2-way multiplex-
ers and demultiplexers Mux,DMux using only the built-in Nand gate.
Each of the required gates is implemented in two variants of either
1-bit or 16-bit bus width. Here is the notation of N2T’s custom
HDL:

// chip with 1-bit bus width
CHIP And {

IN a, b; // input pins
OUT out; // output pins

PARTS:
Nand(a=a, b=b, out=nandOut);
Not(in=nandOut, out=out);

}

// chip with 16-bit bus width
CHIP And16 {

IN a[16], b[16]; // 16-bit input bus
OUT out[16]; // 16-bit output bus

PARTS:
Nand16(a=a, b=b, out=nandOut);
Not16(in=nandOut, out=out);

}

This assignment serves as an introduction to HDL and Logisim.
It is somewhat repetitive which allows the students to get familiar
with the HDL syntax and the editor options in Logisim. We also
use it as an opportunity to familiarize the students with the file
format for testing circuits by requiring submission of test cases (see
Section 6). Instructors can choose the appropriate level of detail.

N2T also includes the requirement to design 4-way and 8-way
Mux,DMux. We defer this to Project 2.

4.2 Project 2: Adders
The requirement is to build HalfAdder and FullAdder out of ele-
mentary gates and use these new chips to build Add16, for adding
two 16-bit numbers, as well as Inc16 for adding the constant 1 to
a 16-bit number.

In our course here we also complete the 4-way and 8-way Mux,
DMux. We follow the implementation suggestion in N2T to use a
recursive approach, i.e. 4-way Mux is built out of two 2-way Mux
and 8-way Mux is built out of two 4-way Mux (plus an additional 2-
way Mux in each case). In Logisim the students use several copies of
the built-in Mux gate by setting its properties appropriately. Similar
ideas are used for DMux.

4.3 Project 3: ALU, Bit, 16-bit Register
Here we focus on the ALU which is part of Project 2 in N2T. The
actual implementation of the ALU is straightforward, but its design
and operation can be difficult to grasp initially, so moving this into
its own project allows the students to focus on the main ideas.

We also set the stage for the implementation of the memory
chips by implementing the basic building blocks Bit and Register.
This starts the transition from combinational to sequential circuits
but the transition is quite manageable and does not detract from
the implementation of the ALU.

4.4 Project 4: RAM Chips; Assembly
The requirement is to build RAM chips that range in size from 8
(RAM8) to 16K (RAM16K) of 16-bit addressable units/registers. Here
the recursive approach from Project 2 can be applied again, i.e.
RAM64 is built out of 8 RAM8, RAM512 out of 8 RAM64, etc. Since
the hardware portion of the project is straightforward to imple-
ment, we introduce ARM Assembly which roughly corresponds to
Project 4 in N2T and is discussed in Section 7.

Variations on "From Nand to Tetris" with Logisim and ARM ITiCSE 2023, July 8–12, 2023, Turku, Finland

Table 1: The project sequence described in Sections 4 and 7.

Project 1 Project 2 Project 3
HW: Basic Gates HW: Adders, n-Way Mux,DMux HW: ALU, Bit, Register

Project 4 Project 5 Project 6
HW: RAM SW: ARM Functions, Recursion HW: CPU
SW: ARM Intro, Arrays

Project 7 Project 8 Project 9
HW: Memory, Computer SW: ARM to Hack Translator SW: ARM to Hack Translator
SW: Machine Code MOV,CMP,ADD,JMP,... LDR,STR,LDM,STM,...

4.5 Project 6: CPU
The requirement is to implement the CPU both in HDL and Logisim.
The CPU is the most complicated of the chips implemented so far
and is separated in its own project. It requires solid understanding
of the function of the ALU, which is perhaps the next component in
order of complexity. The CPU design of N2T includes two registers
labeled A and D where D is used to store data values and A can be
used both as data and as address register.

To simplify the implementation the students are advised to cre-
ate two sub-circuits: the first sub-circuit controls where the value
computed by the CPU should be stored, which could be any subset
of A,D,M (M denotes computer memory); the second sub-circuit de-
termines whether a branch/jump should take effect based on the
instruction and the value computed by the ALU, i.e. implementation
of JEQ,JLT,...,JMP. The details can be inferred from the CPU de-
scription in [9].

4.6 Project 7: Memory and Computer; Machine
Code Programming

Upon completing this project the students have built a working
computer. The two required hardware components — Memory and
Computer— are quite straightforward to implement, and therefore,
we also include a software portion on writing programs in Hack
Machine Code and Hack Assembly, which is discussed in Section 7.

The Memory includes the 16K RAM built previously as well as
memory-mapped Screen of size 8K and Keyboard (a single 16-
bit word). This reminds the students of Project 4 in which smaller
RAMmodules were combined to create a larger RAM.Here Screen
and Keyboard are viewed as memory modules and the only chal-
lenge compared to Project 4 is that the memory modules are of
different sizes, which requires more careful use of Mux and DMux.

Somewhat anticlimactically the Computer is the simplest circuit
to build. It is a direct copy of the diagram provided in [9]. The
Computer is simply the CPU connected to a ROM and the Memory
module. Programs are loaded in the ROM module and their execu-
tion produces a result in the Memory (e.g. the n-th Fibonacci number
in cell 0 of the RAM, a drawing of a cat on the Screen, etc.).

To test the Computer implementation the students are given two
programs created by the authors. The Cat program shows an an-
imation of a running cat. The Pong program is a game where the
goal is tomove a paddle left/right via the Keyboard and hit a bounc-
ing ball; successful hits are indicated as dots under the paddle.

Figure 1 show screenshots of the two programs running on the
same computer implementation in Hardware Simulator and in Lo-
gisim. It was particularly rewarding for the students to see the sim-
ulation in Logisim.

(Note that an instructor provided Pong implementation does not
take away the sense of accomplishment. Writing Pong in Hack As-
sembly would be a challenging and tedious undertaking for the
students. The authors of N2T also provide an implementation of a
Pong game in the final chapter written in their high-level language
Jack which is the focus of the second half of N2T. Although this
would be a more feasible project, it is wisely left for independent
exploration.)

5 N2T LIBRARY FOR LOGISIM
This section describes the extension to Logisim that enables the
parallel implementation of the N2T projects. The N2T support soft-
ware contains default implementation of all circuits that are part
of the hardware projects. Whenever a circuit implementation is
not found in the project directory the Hardware Simulator uses
a built-in implementation. The suggested workflow is to develop
each project in a separate folder and only implement the required
circuits. This ensures that progress is made even if a circuit from
a previous project was not implemented correctly, since the Hard-
ware Simulator will use the built-in implementation. Moreover, the
built-in implementation is faster and should be preferred (particu-
larly relevant for the RAM modules in Project 4).

Logisim has a rich collection of components including those
used in N2T. Therefore, direct implementation in Logisim of the
computer architecture proposed in N2T is feasible. Only a small
set of N2T components are not available in Logisim: ALU, Inc, PC,
CPU, Screen, and Keyboard. (Versions of Screen and Keyboard
are available, but do not have the same interface as required by
N2T). Fortunately, users of Logisim can extend it via external JAR
libraries that contain Java implementations of the desired compo-
nents. The Java implementations must conform to a set of design
and implementation guidelines described on the Logisim website.

We created nand2tetris.jarwhich contains the missing compo-
nents and can be used by instructors whowould like to develop the
N2T projects in Logisim. Figure 2 shows nand2tetris.jar loaded in
Logisim with its components arranged on the canvas. This ensures
that students can continue to make progress in each new stage in
case there were difficulties in a previous assignment.

ITiCSE 2023, July 8–12, 2023, Turku, Finland Ivaylo Ilinkin

Figure 1: The Cat and Pong programs executed on Hardware Simulator and Logisim

6 CIRCUIT TESTING
This section includes a brief discussion on circuit testing, both for
students during project development and for instructors during
grading. The N2T support materials include test data for each cir-
cuit that is split into two files:

• .tst is a script that sets the circuit inputs and triggers signal
propagation

• .cmp is a truth table that shows the expected values of the
outputs for given values of the inputs; for sequential circuits
the clock is part of the inputs

The .tst file is loaded in Hardware Simulator and after executing
the script (step-by-step or full run) the Hardware Simulator com-
pares the output with the expected results in the .cmp file. The
Hardware Simulator also has command line mode that allows in-
structors to test one or several circuits from the command line.

Logisim has a similar testing feature. Test cases are specified in
a format close to the N2T .cmp file and after execution Logisim
generates a report that highlights the failed cases. The test can be
runwithin Logisim or from the command line for grading. Unfortu-
nately, the testing feature of Logisim does not work for sequential
circuits. We plan to consider this in future work and share it with
the community in order to facilitate testing of the projects.

7 SOFTWARE PROJECTS
In this section we describe the software projects used in the course.
Some of the projects are motivated by N2T, while others are de-
signed to meet the specific needs of our course.

7.1 Project 4 & 5: ARM Assembly
N2T introduces assembly programming via a language designed
by the authors called Hack Assembly. Unfortunately, Hack Assem-
bly is not representative of a typical assembly language, and there-
fore, we have opted to supplement the discussion on assembly lan-
guages with an introduction to ARM Assembly.

This introduction is split in two parts. Project 4 described in
Section 4.4 contains the first part of ARM Assembly programming
which is an implementation of Bubble Sort. Prior to this assignment
the students have been introduced to the concepts of assembly pro-
gramming including how to express conditions and repetition and

Figure 2: The nand2tetris.jar library created for our
course to provide the missing N2T components. Currently,
Keyboard is given as an actual circuit, but will eventually be
incorporated in the library.

Figure 3: The VisUAL ARM emulator.

have seen examples that add the numbers from 1 to 𝑛 or add all
numbers in an array.

For the implementation of Bubble Sort the students are guided
through a series of stages:

(1) carry out a single pass through the array exchanging every
pair of elements that are out of order

Variations on "From Nand to Tetris" with Logisim and ARM ITiCSE 2023, July 8–12, 2023, Turku, Finland

(2) wrap the code from the previous step in a loop that runs n-1
times; this guarantees that the array is sorted

(3) modify the code from step 1 so that after a complete pass
through the array is made, register R10 contains either 0 or
1 to indicate whether a swap occurred

(4) modify the loop from step 2 to stop when a complete pass
has left register R10 with 0, i.e. no swap took place

The followingweek the students complete a software only project
on ARM Assembly that covers the concepts of stack frames to sup-
port function calls, parameter passing, and recursion. As part of
this assignment the students develop recursive implementations
of computing the 𝑛-th Fibonacci number and Binary Search.

We use VisUAL [1], "A highly visual ARM emulator", which of-
fers a beginner-friendly environment for writing ARM Assembly
programs (Figure 3). It supports syntax highlighting, automatic in-
dentation, single-step execution, and register and memory viewer.
The set of ARM instructions supported by VisUAL is rich enough
to serve as a solid introduction to ARM Assembly programming.
The free textbook Dive into Systems [7, 8] has a good treatment of
Assembly programming, in general, and ARM, in particular.

7.2 Project 7: Machine Code
Project 7 described in Section 4.6 contains a software portion on
machine language based on Hack Machine Code. Unlike Hack As-
sembly, Hack Machine Code is representative of the main ideas that
one might wish to present on machine language programming.
This portion of the project asks for an iterative implementation of
a program that computes the 𝑛-th Fibonacci number. Overall, the
students seemed comfortable with understanding the instruction
format and putting together instructions in binary form to carry
out the various steps. Along the way the students were introduced
to Hack Assembly which happens to be a good shorthand for ma-
chine language instructions.

Both Logisim and Hardware Simulator make it possible to load
the program in ROM and trace through the execution one instruc-
tion at a time. Hardware Simulator can display the instructions in
a variety of formats, including binary, hexadecimal, and assembly,
while Logisim restricts the display to hexadecimal. However, obser-
vations from debugging sessions with students suggest that the dis-
play format of the instruction is less important then the intended
effect. In other words, students have a sense of what changes are
expected to happen in memory and in what order. If the intended
effect is not observed after executing a particular instruction, it is
examined more closely to determine which bits are set incorrectly
(often due to a typo or accidental bit insertion/deletion).

7.3 Project 8 & 9: Assembler/Translator
Chapter 6 of N2T concludes with a project on writing anAssembler.
The goal is to translate a program written in Hack Assembly to
Hack Machine Code. We modified the project to be on writing a
Translator from ARM Assembly to Hack Assembly (it would have
been a trivial change to write Hack Machine Code directly).

The Translator was implemented in C++ and was split over two
assignments that were completed at the end of the semester. The
Translator supported all ARM instructions that were used as part
of the software projects in Section 7.1. The only handout given to

the students were functions to read a line from a file and to extract
tokens from the line. The students maintained their own lookup
tables for labels and identifiers for a two-pass translator.

The implementation had a simple structure: a main loop read-
ing each ARM Assembly line that dispatched to the appropriate
method based on the first token in the line (the ARM instruction).
The first translator assignment focused on the basic instructions
(e.g. MOV,CMP,ADD,SUB) as well as branch instructions and lookup
tables. The second assignment added support for arrays and func-
tion calls (e.g. LDR,STR,LDM,STM,DCD,BL). TheARM registerswere
mapped to virtual registers at addresses 0-15 in theHack Computer.

With this project the students could translate their ARM pro-
grams from Section 7.1 and execute them on the Hack Computer
either in the Hardware Simulator or in Logisim.

8 FEEDBACK
The main focus of this work was to explore the effectiveness of a
dual approach for implementing the N2T projects using both HDL
and Logisim. We expected that the two approaches will comple-
ment each other and that the more concrete development and sim-
ulation environment of Logisim with its immediate visualization
of the actual circuits and signal propagation will enhance learning
and appreciation for the projects.

The results from a pilot survey are summarized in Tables 2 and 3
in this experience report (there were 14 responses out of 18 en-
rolled students). The feedback suggests that the dual approach was
effective in teaching computer organization concepts. The responses
give strong endorsement of building the computer in Logisim and
the comments in the freeform question suggest that there is ben-
efit in using both the high-level descriptive approach of HDL and
the low-level concrete construction in Logisim.

Overall, it appeared that the students followed a development
process that alternated between the two approaches. The preferred
workflowwas to create the initial implementation in Logisim since
it provides a more concrete realization of the design. After initial
testing the Logisim implementation was translated in HDL. Test-
ing iterated between the two implementations which was helpful
in illustrating the connection between the two different forms of
expressing the design. The student feedback has given strong en-
dorsement of the current approach andwe plan to refine it in future
iterations of the course.

9 CONCLUSION
This paper shared experience with teaching computer organiza-
tion based on the course From Nand to Tetris [9, 12–14]. The main
contributions of this work include:

• Ideas for integrating the N2T projects with Logisim.
• Support library nand2tetris.jar for missing components.
• Implementation in Hack Assembly of engaging non-trivial
test programs Cat and Pong.

• Suggestions for integrating ARM Assembly programming
with the Hack platform.

Out hypothesis was that the concrete visualization of digital
circuits and signal propagation offered by a digital circuit simu-
lator such as Logisim will enhance the understanding and the ap-
peal of the computer organization topics presented in N2T. Student

ITiCSE 2023, July 8–12, 2023, Turku, Finland Ivaylo Ilinkin

Table 2: Survey Feedback: SD=Strongly Disagree, D=Disagree, N=Neutral, A=Agree, SA=Strongly Agree.

SD D N A SA

1. The Nand2Tetris projects were effective in teaching computer architecture concepts. (The question is about
the projects on their own, separate from HDL and Logisim.)

1 0 0 7 6

2. The use of Logisim enhanced my understanding of the Nand2Tetris projects and computer architecture
concepts.

0 0 0 0 14

3. The use of Logisim enhanced my understanding of how software and hardware interact. 0 0 0 5 9
4. The use of Logisim motivated me to complete the projects. 0 0 0 2 12
5. Logisim should be used in future iterations of this course. 0 0 0 1 13
6. HDL and Hardware Simulator enhanced my understanding of the Nand2Tetris projects and computer ar-

chitecture concepts.
1 0 4 6 3

7. HDL and Hardware Simulator were helpful in completing the Nand2Tetris projects. 1 0 4 5 4

Table 3: Freeform Question: Please share your thoughts on the answers you gave to the previous questions.

• I leanred a lot through the use of Logism and HDL. Being able to slowly move up in the complexity of the chips helped me get a better
grasp of the how it work. Overall, pleased with Nand2Tetris with the use of logism and HDL

• I really enjoyed using Logisim and I thought it helped a lot towards deepening my understanding of the concepts. HDL and Hardware
Simulator also helped, but less so, because I felt like I was just copying my Logisim project in a different format.

• I really enjoyed everything about Logisim/Hardware simulator. It helped me visualize all of the chips being made and allowed me to
work with them to further conceptualize how they worked. Using the two different mediums also enhanced understanding by making
me think about implementing the chip using different formats.

• Overall, the logisim was always easiest to complete at first for the Nand2Tetris projects. It gave a nice visual to understand what was
happening the circuits and we could manually test different cases ourselves. This is return made it easier to do the Hardware HDL part.

• I really liked working with Logisim. I think its visual demonstration of bits and gates is very informative. For HDL, I would say it was
less informative but it still helped me understand the ins and outs of Logisim.

feedback from a pilot survey included in this experience report of-
fers evidence that the approach has been successful in meeting the
goals.

REFERENCES
[1] Salman Arif. 2015. VisUAL: A Highly Visual ARM Emulator.

https://salmanarif.bitbucket.io/visual/index.html
[2] Michael Black and Nathaniel Waggoner. 2013. Emumaker86: A Hardware

Simulator for Teaching CPU Design. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 323–328.
https://doi.org/10.1145/2445196.2445294

[3] Michael David Black and Priyadarshini Komala. 2011. A Full System X86 Sim-
ulator for Teaching Computer Organization. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE
’11). Association for Computing Machinery, New York, NY, USA, 365–370.
https://doi.org/10.1145/1953163.1953272

[4] Carl Burch. 2002. Logisim: A Graphical System for Logic Circuit De-
sign and Simulation. J. Educ. Resour. Comput. 2, 1 (March 2002), 5–16.
https://doi.org/10.1145/545197.545199

[5] John L. Donaldson, Richard M. Salter, Joe Kramer-Miller, Serguei Egorov, and
Akshat Singhal. 2009. Illustrating CPU design concepts with DLSim 3. 2009 39th
IEEE Frontiers in Education Conference (2009), 1–6.

[6] Logisim-evolution. 2022. https://github.com/logisim-evolution
[7] Suzanne J. Mathews, Tia Newhall, and Kevin C. Webb. 2022. Dive into Systems.

https://diveintosystems.org/
[8] Suzanne J. Matthews, Tia Newhall, and Kevin C. Webb. 2021. Dive into

Systems: A Free, Online Textbook for Introducing Computer Systems. Asso-
ciation for Computing Machinery, New York, NY, USA. 1110–1116 pages.
https://doi.org/10.1145/3408877.3432514

[9] Noam Nisan and Shimon Schocken. 2001. The Elements of Computing Systems.
MIT Press, New York, NY. https://www.nand2tetris.org/

[10] Linda Null and Julia Lobur. 2003. MarieSim: The MARIE Com-
puter Simulator. J. Educ. Resour. Comput. 3, 2 (June 2003), 1–es.
https://doi.org/10.1145/982753.982754

[11] David A. Poplawski. 2007. A Pedagogically Targeted Logic Design and Simula-
tion Tool. In Proceedings of the 2007 Workshop on Computer Architecture Educa-
tion (San Diego, California) (WCAE ’07). Association for Computing Machinery,
New York, NY, USA, 1–7. https://doi.org/10.1145/1275633.1275635

[12] Shimon Schocken. 2012. Taming Complexity in Large-Scale System Projects. In
Proceedings of the 43rd ACMTechnical Symposium on Computer Science Education
(Raleigh, North Carolina, USA) (SIGCSE ’12). Association for ComputingMachin-
ery, New York, NY, USA, 409–414. https://doi.org/10.1145/2157136.2157259

[13] Shimon Schocken. 2018. Nand to Tetris: Building a Modern Computer Sys-
tem from First Principles (Abstract Only). In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education (Baltimore, Maryland, USA)
(SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 1052.
https://doi.org/10.1145/3159450.3162353

[14] Shimon Schocken, NoamNisan, andMichal Armoni. 2009. A Synthesis Course in
Hardware Architecture, Compilers, and Software Engineering. In Proceedings of
the 40th ACMTechnical Symposium on Computer Science Education (Chattanooga,
TN, USA) (SIGCSE ’09). Association for Computing Machinery, New York, NY,
USA, 443–447. https://doi.org/10.1145/1508865.1509021

[15] Derek C. Schuurman. 2013. Step-by-Step Design and Simulation of a
Simple CPU Architecture. In Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 335–340.
https://doi.org/10.1145/2445196.2445296

[16] Timothy Stanley, Nathan I. Kim, Yiu-Ming Chan, Ji Zheng, and Leslie Fife. 2009.
Experiences in Teaching Computer Architecture. J. Comput. Sci. Coll. 24, 4 (apr
2009), 46–52.

[17] Timothy D. Stanley, Thanh Quach Xuan, Leslie Fife, and Don Colton. 2007. Sim-
ple Eight Bit, Emulated Computers for Illustrating Computer Architecture Con-
cepts and Providing a Starting Point for Student Designs. In Proceedings of the
Ninth Australasian Conference on Computing Education - Volume 66 (Ballarat, Vic-
toria, Australia) (ACE ’07). Australian Computer Society, Inc., AUS, 141–146.

