
Heuristics for Estimating Contact Area of
Supports in Layered Manufacturing

IVAYIO ILINKIN

Rhodes College

RAVI JANARDAN

University of Minnesota

MICHIEL SMID

Carleton University

ERIC JOHNSON

University of Minnesota

PAUL CASTILLO

Lawrence Livermore National Laboratory

and

JÖRG SCHWERDT

Softwarebüro Bubel GmbH

Layered manufacturing is a technology that allows physical prototypes of three-dimensional(3D)

models to be built directly from their digital representation, as a stack of two-dimensional(2D)

layers. A key design problem here is the choice of a suitable direction in which the digital model

should be oriented and built so as to minimize the area of contact between the prototype and

temporary support structures that are generated during the build. Devising an efficient algorithm

Authors’ addresses: Ivayio Ilinkin, Department of Mathematics and Computer Science, Rhodes Col-

lege, Memphis, TN 38112; email: ilinkin@rhodes.edu. Research supported, in part, by NSF grant

CCR–9712226. Ravi Janardan and Eric Johnson, Department of Computer Science & Engineer-

ing, University of Minnesota, Minneapolis, MN 55455; email: janardan@cs.umn.edu, erj@visi.com.

Research supported, in part, by NSF grants CCR-9712226 and CCF-0514950. This effort was also

sponsored, in part, by the Army High Performance Computing Research Center under the aus-

pices of the Department of the Army, Army Research Laboratory cooperative agreement number

DAAD19-01-2-0014, the content of which does not necessarily reflect the position or the policy of

the government, and no official endorsement should be inferred; Michiel Smid, School of Computer

Science, Carleton University, Ottawa, Canada, K1S 5B6; email: michiel@scs.carleton.ca. Research

supported by NSERC. Research supported, in part, by NSF grants CCR-9712226. Paul Castillo,

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,

CA 94551; email: castillo17@llnl.gov. Jörg Schwerdt, Softwarebüro Bubel GmbH, 66459 Kirkel,

Germany; email: jschwerdt@swbb.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-6654/2006/0001-ART1.6 $5.00 DOI 10.1145/1187436.1210589 http://doi.acm.org

10.1145/1187436.1210589

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006, Pages 1–19.

2 • I. Ilinkin et al.

for computing such a direction has remained a difficult problem for quite some time. In this paper, a

suite of efficient and practical heuristics is presented for estimating the minimum contact area. Also

given is a technique for evaluating the quality of the estimate provided by any heuristic, which

does not require knowledge of the (unknown and hard-to-compute) optimal solution; instead, it

provides an indirect upper bound on the quality of the estimate via two relatively easy-to-compute

quantities. The algorithms are based on various techniques from computational geometry, such as

ray-shooting, convex hulls, boolean operations on polygons, and spherical arrangements, and have

been implemented and tested. Experimental results on a wide range of real-world models show

that the heuristics perform quite well in practice.

Categories and Subject Descriptors: E.1 [Data Structures]; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems; I.6 [Computer-Aided
Engineering]

General Terms: Algorithms, Experimentation, Measurement, Performance, Theory

Additional Key Words and Phrases: Computational geometry, algorithm implementation and

testing

1. INTRODUCTION

Layered manufacturing (LM) is a fast-growing technology with significant im-
pact on the efficiency of the design process in a broad range of industries [Jacobs
1992; Chua et al. 2003]. LM offers a flexible and cost-effective alternative to
traditional methods used in the design phase of physical prototypes. Current
LM technology produces high-quality prototypes with added color in a matter
of hours and at low cost. The prototypes can be inspected for flaws and, if neces-
sary, the design can be modified and the process repeated until the final design
has reached the desired quality.

Stereolithography is a widely used LM process. In essence, the stereolithog-
raphy apparatus (SLA) consists of a vat of light-sensitive liquid resin, a plat-
form, and a laser (see Figure 1). The input to the process (and to virtually
all other LM processes) is a surface triangulation of the digital model in the
industry-standard STL format. The model is oriented suitably and sliced into
horizontal two-dimensional(2D) layers, which are then sent over a network to
the SLA. The laser traces out the contour of each layer (a polygon) and then
scans the interior in a zig-zag pattern. The exposure to the laser causes the
scanned portion of the liquid to harden and form the physical layer. The plat-
form is then lowered by an amount equal to the layer thickness (typically a few
thousandths of an inch) and the next layer is then built on top of the previous
one; thus, the three-dimensional(3D) prototype is realized eventually as a ver-
tical stack of 2D layers. Ideally each new layer should rest completely on top of
the previous one, so that the prototype is self-supporting during the build phase.
Unfortunately, the complex shape of real-world prototypes often prevents them
from being self-supporting (in any orientation). Therefore, during a prepro-
cessing step, the model is analyzed and additional structures called supports
are created and merged with the description of the model. Supports are built
simultaneously with the prototype and later removed in a postprocessing step.

The choice of orientation can critically impact the efficiency of the build pro-
cess and the surface quality of the physical prototype. Several competing crite-
ria need to be addressed when choosing an optimal orientation. For example,

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 3

Fig. 1. The stereolithography apparatus, along with the sliced digital model and support

structures.

an optimal orientation that minimizes the amount of support structures will,
in general, lead to faster build times. Similarly, an orientation that minimizes
the contact area (the area of that portion of the surface of the prototype that
is in contact with supports) would help minimize damage to the surface of the
prototype during support removal.

The problem of finding a suitable orientation can be translated into purely
geometric terms and this has led to a considerable amount of research in recent
years. Asberg et al. [1997] (see also [Bose 1995]) describe efficient algorithms to
decide if a given model can be built without supports using Stereolithography.
Majhi et al. [1999b] give algorithms to minimize the volume of supports and
contact area for convex polyhedra. (see also [Majhi 1998].) Schwerdt et al. [2002]
show how to choose a build direction, that protects prescribed facets from being
damaged by supports. Agarwal and Desikan [2000] give an efficient algorithm
to compute a build direction, which approximates the minimum contact area
for a convex polyhedron. They also show that for a nonconvex polyhedron the
set of directions for which the total area of the facets in contact with supports is
minimum has �(n4) connected components. (Note that this problem is not quite
the same as minimizing the total contact area, as it considers the entire area
of a facet in contact with supports regardless of area actually in contact; never-
theless, the �(n4) lower bound hints at the potential difficulty associated with
minimizing the contact area and provides further motivation for the heuristics
we consider here.) Johnson [1999] shows how to compute support descriptions
efficiently for a given build direction.

Unfortunately, very few results are available for the problem of optimizing
support requirements for nonconvex polyhedra. Majhi et al. [1999a] give sup-
port optimization algorithms for nonconvex polygons in the case of 2D stere-
olithography. An exact algorithm to minimize contact area for polyhedral mod-
els is presented in [Schwerdt 2001], but its high running time precludes its use
in practice; specifically, the running time is O(n6q(n)), where q(n) is the time
to solve a certain nonlinear optimization problem on the unit sphere. Allen
and Dutta [1995] give heuristics for minimizing support contact area for non-
convex polyhedra. Their approach restricts candidate build directions to the
(discrete) set of facet normals of the convex hull of the model and, furthermore,

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

4 • I. Ilinkin et al.

considers only those facets whose areas are relatively large (so that the part
is stable).

1.1 Contributions

In this paper, we make further progress on the contact area problem for poly-
hedral models. Specifically, we provide a suite of efficient and practical heuris-
tics for estimating support contact area (Sections 4–6). These heuristics are
based on various techniques from computational geometry, such as ray shoot-
ing, convex hulls, boolean operations on polygons, spherical algorithms, etc.,
and make use of the CGAL Computational Geometry Algorithms Library and
LEDA [Mehlhorn and Naher 1999] libraries in the software implementation.
We also give a method for evaluating the quality of the estimate provided by
any heuristic, which does not require knowledge of the (unknown and hard-to-
compute) optimal solution; instead, it provides an indirect upper bound on the
quality of the estimate via relatively easy-to-compute quantities (Section 3).
Finally, we present an extensive set of experimental results on real-world STL
models that show that, in practice, the heuristics perform quite well (Section 7).

2. PRELIMINARIES

We denote byP the polyhedron of interest and by n the number of facets inP. We
assume that the facets ofP are triangles and that its boundary is represented in
some standard form, such as, for instance, a doubly connected edge list [de Berg
et al. 1997] or a winged-edge structure [Baumgart 1975]. (If necessary, such a
representation can be computed easily from the standard STL representation of
P [McMains and Séquin 1999].) Let d be a given build direction (a unit-vector);
we assume, w.l.o.g., that d coincides with the positive z direction.

Let f be any facet of P. We classify f , w.r.t. the given build direction d, as
a front facet, a back facet, or a parallel facet of P, depending on whether the
angle between the build direction d and the outward unit-normal, n f , of f is
less than, greater than, or equal to 90◦, respectively.

We now formalize the notion of supports. A facet of a polyhedron will need to
be supported, if and only if, the angle between its outer normal and the build
direction of the polyhedron is greater than 90◦. This implies that the back facets
of P will need to be supported. For concreteness, consider a back facet f of P.
The support polyhedron for f is the closure of the set of all points p ∈ IR3 such
that p is not in the interior of P and the ray shot from p in direction d first
enters P through f . Informally, the support polyhedron of f is bounded from
above by f , on the sides by vertical facets that “drop down” from the edges of
f , and from below by the platform on which P rests and/or portions of front
facets of P. (If P is convex, then it is bounded from below by only the platform.)
The supports of P w.r.t. a build direction is the collection of support polyhedra
for the back facets.

The support contact area for P is the total surface area of P that is in contact
with supports. It consists of the area of all the back facets of P and the areas of
those portions of front facets and parallel facets that are in contact with sup-
ports. Note that for a convex polyhedron, the support structures are relatively

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 5

simple, in that only back facets are in contact with supports and every point on
a back facet is in contact with supports. Furthermore, the support structures
extend all the way down to the platform. However, for a general polyhedron,
the situation is more complex: First, in addition to back facets, some front and
parallel facets can also be in contact with supports (involuntarily, because of a
back facet on a higher layer needing support). Second, front and parallel facets
may be only partially in contact with supports. Finally, supports need not ex-
tend all the way down to the platform, but may, instead, terminate on other
parts of the polyhedron itself. This is illustrated in Figure 1 for the supports for
the fifth layer. (The figure is shown in 2D, for simplicity.) It is this complexity
of the support structures that makes the support optimization problem that we
consider so challenging.

3. AN UPPER BOUND ON THE QUALITY OF THE ESTIMATE

Ideally, we would like to find a direction d∗ that minimizes the contact area of
P. Unfortunately, the structure of nonconvex polyhedra presents significant
challenges in efficiently finding an optimal solution. Unlike convex objects,
for which only the back facets are in contact with supports, nonconvex ob-
jects can have portions of front and parallel facets in contact with supports,
as well. Furthermore, a small change in the build orientation can result in
a significantly different footprint of the support structures, possibly affecting
other facets that previously were not in contact with supports. These factors
make it difficult to design an exact algorithm that is both efficient and prac-
tical. Therefore, a simple and efficient heuristic to estimate the contact area,
along with a measure of the quality of the estimate, can be quite useful in
practice.

We now develop a measure for the quality of the estimate provided by a given
heuristic. Specifically, the ratio test developed below gives an indication of how
close the estimated contact area is to the optimal contact area. Let CA(d) denote
the contact area of P for a given build direction, d, and let d̂ be the direction
computed by a heuristic. We show how to obtain an upper bound on the ratio
CA(d̂)/CA(d∗) via two relatively easy-to-compute quantities. Let BFA(d) be the
total area of the back facets w.r.t. d and let d′ be a direction that minimizes the
total area of back facets.

Notice that BFA(d∗) ≤ CA(d∗), since CA(d∗) includes possible contact area on
front and parallel facets, and BFA(d′) ≤ BFA(d∗), by definition of d′. Therefore,

CA(d̂)

CA(d∗)
≤ CA(d̂)

BFA(d∗)
≤ CA(d̂)

BFA(d′)
(1)

The above result allows us to upper-bound the contact area estimate for a
set of candidate directions, relative to the (unknown) optimal solution, and to
choose from these the best direction d̂. Notice that BFA(d′) needs to be computed
only once, and, therefore, the quality test will depend mainly on the efficiency of
computing the contact area for a given direction. In the next section, we present
two algorithms that compute the contact area, but differ in their accuracy and
efficiency.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

6 • I. Ilinkin et al.

Fig. 2. (a) Computing a patch that is in contact with supports in the exact algorithm; (b) ray

shooting for a front facet f in the heuristic.

We note that the upper bound in Eq. (1) is considerably weaker than a per-
formance guarantee typically proved for an approximation algorithm. Proving
such a bound would be desirable, but it has eluded us thus far. Nevertheless,
the bound in Eq. (1) is still useful, since it can aid the user in selecting a suitable
heuristic for estimating contact area, as we will see in Section 7.

4. COMPUTING CONTACT AREA ON FRONT FACETS FOR A
FIXED DIRECTION

In this section, we describe an exact algorithm and a heuristic for computing
the contact area on front facets for a fixed build direction d. The exact algorithm
is simple, but too slow to be of practical use. However, this is tolerable, since
we use the exact algorithm merely to do a one-time (offline) verification of the
accuracy of our heuristic, which is simple and efficient.

4.1 An Exact Algorithm

W.l.o.g. assume that P rests on the xy plane and that the build direction d co-
incides with the positive z direction. Let f be a fixed front facet and let b be
any back facet. We project f and b to the xy plane and compute the intersec-
tion of their projections (i.e., triangles), which yields a convex polygon, C f (b)
(Figure 2(a)). If C f (b) �= ∅, then let p be any point in it, say the centroid. If
the preimages, pre f (p) and preb(p), of p on f and b, respectively, are such that
preb(p) is above pre f (p) in direction d, then pre f (p) is in contact with supports.
This implies that the preimage pre f (C f (b)) is in contact with supports. This
follows since no facet of P pierces another, so there cannot be another point q
in C f (b), whose preimages on f and b are in the opposite order from those of p.
(Note that it need not be the case that the cylinder bounded by pre f (C f (b)) and
by preb(C f (b)) is a support cylinder, since b, or parts thereof, need not be imme-
diately above f ; there could be parts of other back facets in between.) We can
compute the portions of the front facet f that are in contact with supports, i.e.,

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 7

Table I. Comparison Between the Actual Running Times of the O(n3 log n)

Algorithm in Section 4.1 and the Algorithm in [Shaul and Halperin 2002]a

Reduced Time (s.) Algo. in Time (s.) Algo. in

Model (.stl) #facets Section 4.1 [Shaul and Halperin 2002]

mj 1896 3390 11649

triad1 1983 3788 15161

random tri. 1 400 3203 800

random tri. 2 500 6906 1129

aThe first two test cases are decimated versions of real-world models while the last two are

stacks of randomly generated overlapping triangles. All experiments were done on a sun-

Blade 100 machine with 512 MB of main memory and a 500-MHz processor; Exact arithmetic

is used in both implementations.

the footprint of supports on f , by taking the union of the preimages pre f (C f (b))
that are found to be in contact with supports, for all back facets b. (In our im-
plementation, we used the functions provided by LEDA [Mehlhorn and Naher
1999] to perform the union and intersection operations.)

The most expensive part of this algorithm turns out to be the union step
in the computation of the footprints. Note that the algorithm simply projects
all back facets down to the xy plane, without regard to any intervening facets.
Thus, the complexity of the union of the polygons pre f (C f (b)) on a single front

facet, f , can be �(n2) in the worst case, and �(n3) over all front facets. (An
example of this is a configuration of n/3 front facets stacked on top of each
other and two sets of n/3 back facets above them that overlap in the form of
a trellis.) The total time to compute the union is O(n2 log n) in the worst case
for any front facet [de Berg et al. 1997], hence, O(n3 log n) over all front facets.
The storage requirement is O(n2); since the algorithm works on a facet-by-facet
basis, the space can be reused.

With some additional effort, the running time can be improved to O(n3), as
follows: For each front facet, f , we first project all back facets onto f . Next,
we take the lines supporting each polygon in the projection, compute the ar-
rangement of these lines, and determine the cells in this arrangement that are
covered by the projection of at least one back facet. The union of these cells gives
the footprint of the supports on f . The covering information for the cells can
be computed incrementally, by doing a depth-first traversal of the dual graph
of the arrangement and maintaining a counter that is incremented or decre-
mented depending on whether or not the next cell in the traversal is covered
by the triangle whose side is crossed to reach the cell. The time per front facet
reduces to O(n2) and the claimed bound follows. (Note that this method, un-
like the previous one, takes quadratic time per front facet, regardless of the
geometric complexity of the footprint.)

We note also that a theoretically faster algorithm, running in O(n2 log n)
time and O(n2) space, is possible. This algorithm uses cylindrical decompo-
sition [Mulmuley 1993] and respects intervening facets during projection. An
output-sensitive algorithm with running time O(n log2 n + V log n), where V is
the complexity of the decomposition, is given in [Shaul and Halperin 2002].
Unfortunately, the algorithms described in this section and in [Shaul and
Halperin 2002] are extremely sensitive to degenerate input configurations,

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

8 • I. Ilinkin et al.

and, therefore, reliable implementations require the use of exact arithmetic.
Our experimental results indicate that the use of exact arithmetic introduces
considerable overhead in the running time. Therefore, as mentioned at the be-
ginning of Section 4, we use an exact-result algorithm merely for a one-time
verification of the heuristic in Section 4.3. We have chosen to implement the
relatively simpler O(n3 log n)-time algorithm described above for this purpose.

Table I shows the running time of our O(n3 log n)-time algorithm and that
of [Shaul and Halperin 2002] on two groups of data. The first group consists
of two geometric models.1 The vertex coordinates of the two models have been
slightly perturbed and parallel facets have been removed to satisfy the general
position assumption required by the algorithm in [Shaul and Halperin 2002];
this explains why the number of facets in these models is slightly lower here
than in Tables II and III (see later). The second group consists of sets of triangles
whose coordinates have been generated randomly in a fixed range.

As can be seen from the table, our algorithm runs faster on the two mod-
els and slower on the sets of overlapping triangles than does the algorithm
in [Shaul and Halperin 2002]. One possible explanation for this is that the
triangle datasets contain many pairs that overlap in projection and represent
“difficult” configurations for our algorithm. In real-world models, the number
of overlapping triangles is generally much smaller and so our algorithm runs
faster. (Our algorithm also does not make any general position assumptions.)

4.2 A Heuristic Based on Ray Shooting

In this section, we describe a simple heuristic with a very fast rate of conver-
gence, which makes it practical for real data sets. Consider a front facet f
and let p be a point on f . The point p will be in contact with supports if, and
only if, the ray originating at p in direction d intersects some other facet of
P. Thus, the main idea behind the heuristic is to pick a set of points in the
interior of f and identify those points that will be in contact with supports by
shooting rays in direction d (Figure 2(b)). Let Hf (resp. M f) denote the set of
rays, originating at points on f , that hit a facet of P (resp. miss all facets of
P). Then, the area of f that is in contact with supports can be estimated as
(|Hf |/(|Hf |+ |M f |))∗area(f). As the density of the sample points is increased,
the accuracy of the estimate improves (Figure 2(b)).

The sample points are selected through an adaptive subdivision process.
During the execution of the algorithm, each front facet is subdivided into a
number of triangular patches (initially the entire facet is the only patch). The
centroids of the patches are selected as sample points and the results from the
ray shooting are recorded. Next, each patch is subdivided into two triangles (for
example, by connecting the midpoint of its longest side with the opposite vertex).
The new patches are placed at the end of a queue of unprocessed patches, which
guides the subdivision process in a breadth-first search fashion.

1The geometric models used here (and those used later in Tables II and III) are real-world models

that have been reduced in size, while preserving their general topology, in order to keep the running

times reasonable. We use software such as Decimator and VRMesh [VRMesh] to do the reduction.

However, our final experiments in Tables IV and V use the original models.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 9

The subdivision process is made adaptive in that the number of sample points
per facet is weighted based on area, so that larger facets have more sample
points. In a preprocessing step, each front facet is subdivided repeatedly until
the resulting patches have areas that are less than the average of the areas
of the front facets of P. This ensures that larger facets are subdivided deeper
and, consequently, generate more sample points for the ray-shooting phase.
Furthermore, as the following lemma shows, the preprocessing does not result
in too many patches.

LEMMA 4.1. The number of patches generated after the preprocessing step is
less than 3n, where n is the number of facets of P.

PROOF. Let m be the number of front facets of P, A be total area of the front
facets, and Ā = A

m be the average front facet area. Let S be the set of patches
that result from the front facets of P that are subdivided at least once. Since
our method of subdivision halves the area of a patch and the area is larger than
Ā just prior to the last subdivision, all patches in S have areas that are greater
than Ā/2. If we let A′ denote the total area of the patches in S, and let k = |S|,
then k Ā

2
< A′. Since A′ ≤ A, we have k Ā

2
< A, or k A

2m < A, and, therefore,
k < 2m.

In addition, there are, at most, m front facets of P that are not subdivided in
preprocessing (because their areas are less than Ā to begin with). Since m ≤ n,
the lemma follows.

Each iteration of the algorithm corresponds to a complete subdivision of the
patches and, therefore, will process twice as many patches as the previous one.
The algorithm terminates after a predefined number of iterations, controlled
by the user, or when the change in contact area is not significant. Currently, we
use the convergence criterion δ = |CAi+1 −CAi| < 0.01∗CAi, i.e., the algorithm
terminates when the contact area from iteration i to iteration (i + 1) (denoted
by CAi and CAi+1, respectively) changes by less than 1%.

During each iteration i, i ≥ 1, the algorithm processes less than 2i−1 ∗ 3n
patches. In our implementation, a brute-force approach is used to answer a
ray-shooting query in O(n) time. Thus, for each patch, the ray shooting takes
O(n) time to decide whether the ray hits any facet of P, so the overall time per
iteration is O(2i ∗ n2). Therefore, for a user-specified number, d , of iterations,
the overall running time is O(2d ∗ n2).

4.3 Experimental Results

Table II provides a comparison between the exact algorithm and the heuristic.
The heuristic was run with two different terminating criteria: (1) terminating
after ten iterations, denoted as “τ = 10”, following the initial subdivision of
large facets; (2) terminating based on the convergence criterion described in
Section 4.2, denoted as “δ < 1%.” In the latter case, we also imposed an upper
limit of ten iterations following the initial subdivision of large facets, so that
the computation did not become prohibitively expensive. The comparison tests
were run on decimated versions of real-world STL models because of the slow
performance of the exact algorithm from Section 4.1 that we implemented for

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

10 • I. Ilinkin et al.

Table II. Comparison Between the Exact Algorithm and the Heuristic

to Compute, for a Given Direction, the Contact Area on Front Facetsa

Model (.stl) Reduced Contact Area Time

(#facets) #facets Algorithm (% difference) (s.)

bot case 2000 τ = 10 13644.0 (0%) 41

(17642) δ < 1% 13660.6 (0%) 1

exact 13642.3 4182

carcasse 2000 τ = 10 63.75 (0%) 34

(22876) δ < 1% 63.61 (0%) 1

exact 63.73 3296

mj 2000 τ = 10 1.68 (0%) 29

(2832) δ < 1% 1.66 (−1%) 1

exact 1.68 3391

top case 2000 τ = 10 10239.5 (0%) 53

(16692) δ < 1% 10251.5 (0%) 1

exact 10268.1 4790

triad1 2000 τ = 10 0.33 (0%) 36

(11352) δ < 1% 0.33 (0%) 1

exact 0.33 3757

aLarge models have been decimated to 2000 facets because of the slow speed of the

exact algorithm. Note that the exact algorithm is only used for a one-time verifica-

tion of the accuracy of the heuristic. The models bot case and top case required

two iterations after the initial subdivision to meet the δ < 1% terminating criterion;

carcasse and mj required three iterations; triad1 required four iterations. In the

column labeled “contact area”, the number in parenthesis shows the percentage

difference between the contact area computed by the heuristic and by the exact

algorithm (values are rounded to the nearest percent). The z direction is chosen as

a build direction. The models used here and in the rest of the tables are illustrated

(later) in Table V.

purposes of comparison. (However, our final experiments in Tables IV and V
were done on original models, not decimated ones.) As can be seen, the heuristic
provides nearly the same answer as the exact algorithm, but in a fraction of
the time. All experiments were done on a SunBlade 100 machine with 512 MB
of main memory and a 500-MHz processor. Programs were written in C++ and
use CGAL and LEDA [Mehlhorn and Naher 1999]; the code for the heuristic
uses floating-point arithmetic.

5. HANDLING PARALLEL FACETS

The previous algorithms consider only the contact area on front and back facets.
In order to get an overall estimate of the contact area, we need to also con-
sider the portions of parallel facets that are in contact with supports. In Sec-
tion 5.1, we give an algorithm for computing the exact contact area on parallel
facets; in Section 5.2, we give an efficient heuristic, analogous to the one in
Section 4.2.

5.1 Exact Algorithm

Let f be a parallel facet and let Vf be the vertical strip that is in the supporting
plane of f and contains f exactly. We may assume, w.l.o.g., that no vertex of f
is in the interior of Vf . (Each bounding line of Vf contains at least one vertex
of f . If there is a vertex in the interior of Vf , we draw a vertical line through

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 11

Fig. 3. Computing contact area on parallel facets: (a) (exact algorithm) identifying the segments

that require supports; (b) (exact algorithm) identifying the portions of f that are in contact with

supports; (c) (heuristic) segment sp is in contact with supports, but sp′ is not.

it and split f into two facets that each satisfy the assumption.) Let f̂ be the
projection of f on the xy plane. (Notice that f̂ is just a line segment.)

Consider the back facets of P that either pierce Vf above f , or touch Vf above
f and are in the same halfspace of Vf as the outer unit normal, n f , of f . (These
are the back facets whose supports are potentially in contact with f when P is
built in direction d.) The intersections of these back facets with Vf is a set, A,
of line segments (Figure 3(a)).

Let A′ be the set of segments that correspond to the projections of the seg-
ments in A on the xy plane. Clearly, all the segments in A′ lie on f̂ and can be
merged efficiently, so that no two of the resulting segments overlap. For each
merged segment s, we erect a vertical strip Vs and find its overlap area with f
(Figure 3(b)). The sum of the areas of overlap for all strips Vs gives the overall
contact area on f .

For each facet f , the size of A is O(n). Merging the segments in A′ can be
done efficiently in O(n log n) time by presorting them on their first endpoint.
For each strip Vs the overlap area can be found in constant time. Therefore,
the algorithm takes O(n log n) time per parallel facet, or O(n2 log n) time for all
parallel facets.

5.2 Heuristic

Let f be a parallel facet and let f̂ be the projection of f on the xy plane. (Notice
that f̂ is just a line segment.) Let p be any point on f̂ and let sp be the segment
obtained by intersecting f with the ray originating at p in direction d. The
segment sp will be in contact with supports if, and only if, the supporting line
of sp intersects properly a facet of P at a point above sp (Figure 3(c)).

Let S be a set of sample points on f̂ . Let Hf (resp. M f) be the set of seg-
ments, sp, that are (resp. are not) in contact with supports. If length(Hf) and
length(M f) denote the sum of the lengths of the segments in Hf and M f , re-
spectively, we can estimate the contact area on f as (length(Hf)/(length(Hf) +
length(M f))) ∗ area(f). As the number of sample points is increased, the
accuracy of the estimate also increases.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

12 • I. Ilinkin et al.

Table III. Comparison between the Exact Algorithm and the

Heuristic to Compute, for a Given Direction, the Contact Area on

Parallel Facets of the Models in Table IIa

Model (.stl) Reduced Contact Area Time

(#facets) #facets Algorithm (% difference) (s.)

bot case 2000 τ = 10 701.17 (0%) 0

(17642) δ < 1% 701.17 (0%) 0

exact 701.17 1

carcasse 2000 τ = 10 22.70 (0%) 8

(22876) δ < 1% 22.70 (0%) 0

exact 22.68 143

mj 2000 τ = 10 1.88 (0%) 4

(2832) δ < 1% 1.88 (0%) 0

exact 1.88 40

top case 2000 τ = 10 4352.26 (0%) 21

(16692) δ < 1% 4340.39 (0%) 0

exact 4352.30 352

triad1 2000 τ = 10 0.065 (0%) 3

(11352) δ < 1% 0.065 (0%) 0

exact 0.065 34

aThe z direction is chosen as a build direction. Four of the models required

two iterations after the initial subdivision to meet the δ < 1% terminating

criterion; carcasse required three iterations. In the column labeled “contact

area” the number in parenthesis shows the percentage difference between the

contact area computed by the heuristic and by the exact algorithm (values are

rounded to the nearest percentage).

The sample points are selected through an adaptive subdivision process sim-
ilar to the one described in Section 4.2. The main difference is that the patches
are line segments, and not triangles (initially, each facet f is represented by
the patch f̂). The sample points are the midpoints of the corresponding patches
and each patch is subdivided into two equal length segments at its midpoint.
In our implementation a patch is represented by the edge of f that completely
spans the strip Vf , i.e., whose projection on the xy plane is the same as f̂ . The
patches are subdivided until the lengths of the span segments fall below the
initial average length of all span segments. The terminating criterion is the
same as the one described in Section 4.2. Table III summarizes the execution
of the exact algorithm and the heuristic on decimated models.

6. MINIMIZING BACK FACET AREA

The efficiency of computing the upper-bound in Eq. (1) depends critically on the
efficiency of finding a direction d′ that minimizes the back facet area. In this
section we describe an algorithm, based on arrangements of great circles on the
unit sphere, that computes d′.

6.1 Preliminaries

Let S2 denote the unit sphere of directions. We map each facet, f , to a point on
S2 corresponding to the unit vector, n f , normal to the supporting plane of f .
Let C f be the set of points on S2 that are at distance π/2 from n f , i.e., C f is a
great circle on S2. (Note that several facets of P can correspond to a single great

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 13

circle.) C f defines two open hemispheres: H+
f with pole n f , and H−

f with pole
−n f . Given a build direction d the facet f will be a back facet and, therefore,
will require supports, if, and only if, d ∈ H−

f . Similarly, f will be a front facet,

requiring no supports, if, and only if, d ∈ H+
f . Finally, f will be a parallel facet,

requiring no supports, if, and only if, d ∈ C f . (Although a front or parallel facet
requires no support, it could be in contact with supports required by back facets,
as seen previously.)

Consider the arrangement, A, of great circles C f corresponding to the facets
f of P. A decomposes S2 into three types of elements: (1) cells, which are (open)
regions of intersection of the hemispheres defined by the great circles, (2) arc
edges, which are (open) portions of great circles and determine the boundaries
of the cells in A, and (3) vertices, which are intersections of great circles and
are the endpoints of arc edges.

LEMMA 6.1. The elements of A define regions on S2 that correspond to sets
of directions for which the back facet area is constant.

LEMMA 6.2. The build direction d′ minimizing the back facet area corre-
sponds to a vertex in A.

PROOF. We show that the back facet area corresponding to any point in a cell
or arc edge is never less than the back facet area corresponding to the vertices
of the cell. This implies that it is sufficient to consider only the vertices of A in
order to find d′.

Let c be a cell in A. For any element q of A, let BFA(q) be the back facet area
associated with any direction in q. By Lemma 6.1, BFA(q) is well-defined and
a constant. Notice that the edges bounding c represent transitions onto great
circles, which correspond to front and/or back facets becoming parallel facets.
Therefore, the set of back facets corresponding to any point on the boundary of
c is either the same as or a proper subset of the set of back facets corresponding
to any point in the interior of c. This implies that the back facet area cannot
increase. Therefore, BFA(e) ≤ BFA(c) for any edge e on the boundary of c.

Let e be an edge in A and let u be one of the vertices in A that is adjacent to e
along the supporting great circle C(e) of e. The vertex u represents a transition,
along the arc edge e, onto a great circle other than C(e) along the arc edge e.
Thus, a front and/or a back facet becomes parallel. Arguing as before, BFA(u) ≤
BFA(e).

The above discussion shows that the back facet area corresponding to any
point within a cell in A is never less than the back facet area correspond-
ing to any point along the bounding edges of the cell. Furthermore, the lat-
ter is never less than the back facet area at the vertices in A adjacent to the
edge. Thus, in order to identify the direction d′ that minimizes the back facet
area, it is sufficient to examine only the directions corresponding to the vertices
in A.

6.2 The Algorithm

Lemma 6.2 shows that to find the direction, d′, that minimizes the back facet
area, it is sufficient to consider only the directions on S2 that correspond to the

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

14 • I. Ilinkin et al.

vertices of A. This immediately suggests an algorithm for finding d′:

� (preprocessing) Compute the arrangement A of great circles on the unit
sphere.

� (initialization) Let u be any vertex in A. Identify the front, back, and parallel
facets determined by the direction corresponding to u and initialize the back
facet area term to the total area of the back facets.

� (update) Walk along the vertices of the arrangement, by visiting adjacent
vertices connected by an arc edge. Notice that a vertex in A is the intersection
of great circles and each great circle describes a set of directions for which
front and/or back facets become parallel. Therefore, during the transition
from vertex u to vertex v, let �BFA(u) be the area of the parallel facets at u
that become back facets at v and let �BFA(v) be the area of the parallel facets
at v that were back facets at u. Then, BFA(v) = BFA(u) + �BFA(u)−�BFA(v).

� During the walk along the vertices of the arrangement, we keep track of
the vertex v for which the back facet area is minimized and report as d′ the
direction corresponding to v.

The preprocessing step of the above algorithm takes O(n2) time and O(n2)
space, since the number of great circles in the arrangement is O(n). At each
vertex in the arrangement, we spend time proportional to the degree of the
vertex and, therefore, the overall time during the update step of the algorithm
is O(n2). Therefore, the algorithm takes O(n2) time and uses O(n2) space.

The space usage of the algorithm can be improved to O(n) at the expense of
increased running time to O(n2 log n). The main idea is to walk along arc edges
belonging to the same great circle. This allows us to focus on only a portion of
the arrangement A. Given a great circle C f , we compute its intersections with
all the other great circles and sort the vertices of intersection in their circular
order along C f . Next, we pick an arbitrary vertex and initialize the back facet
area term. Finally, we visit all the vertices along C f and update the back facet
area term following the rule described in the update step of the algorithm above.
During the walk, we keep track of the vertex, v, corresponding to the direction
for which the back facet area is minimized. The optimal direction is identified
after all great circles have been processed.

The running time per great circle is dominated by the time to sort O(n)
vertices of intersection in time O(n log n). The walk along a great circle spends
O(n) time for the initialization and constant time per vertex, or O(n) in total.
Over all great circles, the running time is O(n2 log n). Since we do not compute
the whole arrangement, the space is O(n) and this can be reused.

Table IV summarizes the results of the execution of the O(n2 log n)-time
algorithm on nondecimated models.

We remark that it is possible to obtain a slightly more efficient algorithm
(O(n2) time and O(n) space) at the expense of increased algorithmic complexity.
For convenience, we map the portions of the great circles lying in the upper
half of S2 to straight lines using central projection [Preparata and Shamos
1993]. We can compute the back facet areas at the vertices of the resulting
planar arrangement, which are in 1-1 correspondence with the vertices of the

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 15

Table IV. Performance of the Algorithm for

Computing a Direction that Minimizes the Area of

the Back Facets

Model Minimum area Time

(.stl) #Facets (back facets) (s.)

bot case 17642 14409.4 4079

carcasse 22876 35.98 6784

mj 2832 5.81 82

top case 16692 7843.5 3446

triad1 11352 2.20 1581

arrangement in the upper half of S2, by doing a sweep: when the sweep reaches
a vertex v, we compute BFA(v) from BFA(u), as above, where u is a neighbor
of v that has already been visited. However, to obtain the desired O(n) space
bound, we cannot afford to do a traditional sweep, which requires the entire
arrangement to be precomputed and stored. Instead, we use the topological
sweep method [Edelsbrunner and Guibas 1989] which computes and retains
only the portion of the arrangement that is relevant currently—this has size
O(n). A similar approach is used for the lower half of S2. We note that this
approach was used previously in [Majhi et al. 1999a] to minimize contact area
of supports for a convex polyhedron.

7. APPROXIMATING THE CONTACT AREA

In this section, we present several heuristics for choosing a candidate build
direction to estimate the optimal contact area requirements. The quality of
each heuristic is measured in terms of the ratio CA(d̂)/BFA(d′), where d̂ is the
direction computed by the heuristic, and d′ is the direction that minimizes the
area of the back facets. As shown in Section 3 (Eq. 1) this ratio is an upper
bound on CA(d̂)/CA(d∗), where d∗ is the direction that minimizes the overall
contact area.

We have implemented and tested the following choices for build direction:

� min BFA direction—direction that minimizes the back facet area, as dis-
cussed in Section 6. Since the overall contact area includes the area of the
back facets, it may be advantageous to choose a direction that results in low
contact area contribution from the back facets.

� max PFA direction—direction that maximizes the area of parallel facets. This
direction is computed along with the direction that minimizes the back facet
area; it is easy to adapt the proof of Lemma 6.2 to show that the same candi-
date directions need to be examined in both cases. We consider the direction
and its opposite, since both generate the same area of parallel facets, and take
the better result. The intuition behind this heuristic is that parallel facets
do not themselves require supports and, therefore, by maximizing the area
of parallel facets the number of support structures could be reduced, which
could lead to reduced amount of contact area.

� max PFC direction—direction that maximizes the count of parallel facets.
This direction is computed along with the direction that minimizes the back

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

16 • I. Ilinkin et al.

facet area; again, it is easy to adapt the proof of Lemma 6.2 to show that the
same candidate directions need to be examined in both cases. We consider
the direction and its opposite, since both generate the same count of paral-
lel facets, and take the better result. This is an alternative to the previous
heuristic, but we try to maximize the number of facets that will not require
direct supports, which could lead to a reduction in support structures and,
therefore, a reduction in the amount of contact area.

� PC direction—direction that corresponds to the principal components of the
object. Intuitively, this heuristic builds the object along one of three mutu-
ally perpendicular axes that capture the relative shape of the object. We
consider each direction and its opposite and take the best result. The princi-
pal component directions were computed using MATLAB software from The
MathWorks, Inc.

� Flat direction—direction that is opposite to the outward unit normal of a
facet of the model. During the build phase it is often desirable to build the
part such that it rests on one of its facets. In this case, the facet must be
contained in the boundary of the convex hull, of the model (notice that a facet
on the convex hull may contain several facets from the original model). We
select the facet, f , on the convex hull, which contains facets from the original
model that have the largest total area and use −n f as the build direction,
where n f is the outward unit normal of f . The convex hull is computed using
the functionality provided by the CGAL library. (Note that this heuristic is
somewhat similar to the one in Allen and Dutta [1995], which is described in
Section 1. Unfortunately, we have not been able to make a direct comparison
of the two heuristics as the software for the one used in Allen and Dutta [1995]
appears to be no longer available [personal communication from D. Dutta].)

� Random directions—directions chosen at random. This heuristic was in-
cluded for comparison purposes only. We chose a set of fifteen random di-
rections, computed the contact areas for each of these directions, took their
mean, and then divided this by the minimum back facet area to arrive at the
mean contact area ratio.

Table V illustrates the models used for our experiment and summarizes the
results. For each model, the table shows the contact area ratio computed for
each heuristic and compares the ratio realized by the best heuristic with the
ratio realized by the random heuristic. As seen in the column named “compari-
son,” savings ranging from 9 to 83% are achieved on real-world (nondecimated)
models. Note that even though we are comparing ratios, this is equivalent to
comparing the contact areas themselves, since the denominators for both ratios
are the same, namely, the minimum back facet area.

How might a designer use the results in Table IV? Suppose that the designer
wishes to fabricate model oldbasex, using no more than twice the minimum
contact area. Table V shows that only “Max PFA ratio” guarantees that this
requirement will be met, so the designer can proceed to safely use this heuristic.
(It is possible that some of the other heuristics will also meet the requirement,
since the upper-bound in Eq. 1 is loose, but this is not guaranteed.)

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 17

T
a

b
le

V
.

P
e
rf

o
rm

a
n

ce
o
f

th
e

H
e
u

ri
st

ic
s

fo
r

E
st

im
a

ti
n

g
C

o
n

ta
ct

A
re

a
a

M
a

x
P

o
ss

ib
le

M
in

B
F

A
R

a
n

d
o
m

D
ir

.

M
o
d

e
l
(
.
s
t
l
)

#
F

a
ce

ts
R

a
ti

o
R

a
ti

o
M

a
x

P
F

A
R

a
ti

o
M

a
x

P
F

C
R

a
ti

o
P

C
R

a
ti

o
F

la
t

R
a

ti
o

(m
e
a

n
)

R
a

ti
o

C
o
m

p
a

ri
so

n
(%

)
T

im
e

(s
.)

p
r
i
s
m
1

2
0

5
5

.2
1

.0
[1

]
1

.0
[1

]
2

4
.0

[4
]

1
.0

[1
]

2
4

.0
[4

]
3

0
.3

[6
]

9
7

4

p
y
r
a
m
i
d
1

1
0

1
4

.3
1

.0
[1

]
3

.7
[3

]
6

.0
[4

]
1

.0
[1

]
6

.0
[4

]
7

.8
[6

]
8

7
2

s
t
l
b
i
n
2

2
7

6
1

1
5

.8
2

.2
[1

]
2

.2
[1

]
9

.2
[4

]
8

.5
[3

]
9

.2
[4

]
9

.8
[6

]
7

7
9

0

e
c
c
4

4
9

9
4

4
.9

1
.2

[1
]

1
.2

[1
]

1
.4

[1
]

1
.9

[5
]

1
.8

[4
]

2
.7

[6
]

5
6

8
3

7

t
r
i
a
d
1

1
1

3
5

2
2

.9
1

.9
[4

]
2

.1
[5

]
2

.1
[5

]
1

.4
[1

]
1

.4
[1

]
1

.8
[3

]
1

9
2

2
8

0

t
o
d
2
1

1
1

2
8

7
.2

1
.1

[1
]

1
.1

[1
]

3
.8

[4
]

3
.8

[4
]

1
.1

[1
]

4
.2

[6
]

7
5

4
9

f
0
m
2
7

3
7

3
0

4
.3

2
.4

[2
]

2
.3

[1
]

2
.3

[1
]

2
.4

[2
]

3
.2

[6
]

2
.8

[5
]

1
7

2
1

3

m
j

2
8

3
2

5
.3

2
.1

[1
]

2
.4

[2
]

2
.4

[2
]

2
.6

[5
]

2
.4

[2
]

2
.9

[6
]

2
7

1
2

4

3
8
5
7
4
3
8

1
2

1
8

4
3

.4
2

.6
[6

]
2

.5
[3

]
2

.5
[3

]
2

.4
[2

]
2

.3
[1

]
2

.5
[3

]
9

2
5

7
6

t
o
p
c
a
s
e

1
6

6
9

2
4

.1
2

.8
[4

]
2

.8
[4

]
3

.0
[6

]
2

.1
[2

]
2

.0
[1

]
2

.5
[3

]
2

2
4

9
4

4

c
a
r
c
a
s
s
e

2
2

8
7

6
6

.2
3

.5
[3

]
3

.3
[1

]
4

.0
[4

]
4

.4
[5

]
3

.3
[1

]
4

.9
[6

]
3

4
9

4
3

4

c
o
v
e
r
-
5

9
0

6
5

.7
3

.9
[3

]
3

.9
[3

]
3

.9
[3

]
3

.1
[1

]
5

.2
[6

]
3

.8
[2

]
1

9
1

0

o
l
d
b
a
s
e
x

3
6

6
0

1
5

.6
3

.3
[2

]
1

.7
[1

]
1

2
.0

[5
]

8
.2

[3
]

1
2

.0
[5

]
1

0
.4

[4
]

8
3

1
6

1

b
o
t
c
a
s
e

1
7

6
4

2
3

.0
2

.1
[4

]
2

.1
[4

]
2

.1
[4

]
1

.5
[2

]
1

.3
[1

]
1

.9
[3

]
3

3
5

6
1

7

a
T

h
e

fi
rs

t
tw

o
m

o
d

e
ls

w
e
re

h
a

n
d

-g
e
n

e
ra

te
d

;
th

e
re

m
a

in
in

g
m

o
d

e
ls

a
re

fr
o
m

S
tr

a
ta

sy
s,

In
c,

a
le

a
d

in
g

m
a

n
u

fa
ct

u
re

r
o
f

L
M

m
a

ch
in

e
s

(w
w

w
.s

tr
a

ta
sy

s.
co

m
).

A
ll

m
o
d

e
ls

a
re

o
ri

g
in

a
ls

,
n

o
t

d
e
ci

m
a

te
d

o
n

e
s.

T
h

e
n

u
m

b
e
rs

in
sq

u
a

re
b

ra
ck

e
ts

sh
o
w

th
e

ra
n

k
in

g
s

o
f

th
e

h
e
u

ri
st

ic
s

fo
r

e
a

ch
m

o
d

e
l.

T
h

e
co

lu
m

n
“c

o
m

p
a

ri
so

n
”

sh
o
w

s
th

e
p

e
rc

e
n

ta
g
e

im
p

ro
v
e
m

e
n

t
o
f

th
e

ra
ti

o
a

ch
ie

v
e
d

b
y

th
e

to
p

-r
a

n
k

e
d

h
e
u

ri
st

ic
o
v
e
r

th
e

m
e
a

n
ra

ti
o

g
iv

e
n

b
y

th
e

ra
n

d
o
m

-d
ir

e
ct

io
n

s
h

e
u

ri
st

ic
.

T
h

e
co

lu
m

n
“m

a
x

p
o
ss

ib
le

ra
ti

o
”

is
g
iv

e
n

o
n

ly
a

s
a

re
fe

re
n

ce
a

n
d

re
p

re
se

n
ts

th
e

e
x
tr

e
m

e
si

tu
a

ti
o
n

w
h

e
re

a
ll

o
f

th
e

su
rf

a
ce

a
re

a
o
f

th
e

o
b

je
ct

is
in

co
n

ta
ct

w
it

h
su

p
p

o
rt

s.
T

h
e

co
lu

m
n

“t
im

e
”

in
cl

u
d

e
s

th
e

ti
m

e
fo

r

co
m

p
u

ti
n

g
th

e
m

in
im

u
m

b
a

ck
fa

ce
t

a
re

a
a

n
d

th
e

ti
m

e
s

fo
r

co
m

p
u

ti
n

g
th

e
ra

ti
o
s

fo
r

a
ll

h
e
u

ri
st

ic
s,

e
x
ce

p
t

fo
r

th
e

ra
n

d
o
m

h
e
u

ri
st

ic
,
w

h
ic

h
is

fo
r

p
u

rp
o
se

s
o
f

co
m

p
a

ri
so

n
o
n

ly
.

T
h

e
ti

m
e
-c

o
n

su
m

in
g

st
e
p

is
th

e
co

m
p

u
ta

ti
o
n

o
f

th
e

b
a

ck
fa

ce
t

a
re

a
.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

18 • I. Ilinkin et al.

8. CONCLUSION

We have presented a set of efficient and practical heuristics for estimating
the contact area of supports for polyhedral models in layered manufacturing.
We have also shown how the quality of the estimate, w.r.t. the unknown and
hard-to-compute optimal solution, can be upper-bounded as the ratio of two
relatively easy-to-compute quantities. Our algorithms have been implemented
and tested on a range of real-world models and have been shown to perform
well in practice.

An interesting problem for further work is computing a build direction that
estimates the minimum volume of the support structures. Our approach in
Section 3 for upper-bounding the contact area estimate does not appear to ex-
tend to the volume version of the problem, so a different approach may be
needed.

ACKNOWLEDGMENTS

We thank the four reviewers for many useful suggestions. We are also grateful
to the editor, John Hershberger, for an exceptionally thorough reading of the
paper and for many thoughtful comments. All of this feedback has resulted in
a much-improved paper.

REFERENCES

AGARWAL, P. AND DESIKAN, P. 2000. Approximation algorithms for layered manufacturing. In Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms. 528–537.

ALLEN, S. AND DUTTA, D. 1995. Determination and evaluation of support structures in layered

manufacturing. Journal of Design and Manufacturing 5, 153–162.

ASBERG, B., BLANCO, G., BOSE, P., GARCIA-LOPEZ, J., OVERMARS, M., TOUSSAINT, G., WILFONG, G., AND ZHU,

B. 1997. Feasibility of design in stereolithography. Algorithmica 19, 61–83.

BAUMGART, B. 1975. A polyhedron representation for computer vision. In Proceedings of AFIPS
National Computer Conference. Vol. 44. AFIPS Press, Alrington, VA, 589–596.

BOSE, P. 1995. Geometric and computational aspects of manufacturing processes. Ph.D. thesis,

School of Computer Science, McGill University, Montréal, Canada.

Computational Geometry Algorithms Library (CGAL). http://www.cgal.org.

CHUA, C., LEONG, K., AND LIM, C. 2003. Rapid Prototyping: Principles and Applications. World

Scientific Publ. Inc., Singapore.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O. 1997. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin.

DecimatorTM 1.0, Raindrop Geomagic, Inc., North Carolina. http://www.geomagic.com/products/

decimate/.

EDELSBRUNNER, H. AND GUIBAS, L. 1989. Topologically sweeping an arrangement. Journal of Com-
puter and System Sciences 38, 165–194.

JACOBS, P. 1992. Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography.

McGraw-Hill, New York.

JOHNSON, E. 1999. Support generation for three-dimensional layered manufacturing. Master’s

project report, Dept. of CS & E, Univ. of Minnesota, Minneapolis, MN.

MAJHI, J. 1998. Geometric Methods in Computer-Aided Design and Manufacturing. Ph.D. thesis,

Dept. of Computer Science & Engineering University of Minnesota, Minneapolis, MN.

MAJHI, J., JANARDAN, R., SCHWERDT, J., SMID, M., AND GUPTA, P. 1999a. Minimizing support struc-

tures and trapped area in two-dimensional layered manufacturing. Computational Geometry:
Theory & Applications 12, 241–267.

MAJHI, J., JANARDAN, R., SMID, M., AND GUPTA, P. 1999b. On some geometric optimization problems

in layered manufacturing. Computational Geometry: Theory & Applications 12, 219–239.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

Heuristics for Estimating Contact Area of Supports in Layered Manufacturing • 19

MEHLHORN, K. AND NAHER, S. 1999. LEDA: A Platform for Combinatorial and Geometric Comput-
ing. Cambridge University Press, Cambridge.

MULMULEY, K. 1993. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice Hall, Englewood Cliffs, NJ.

MCMAINS, S. AND SÉQUIN, C. 1999. A coherent sweep plane slicer for layered manufacturing. In

Proceedings of the 5th ACM Symposium on Solid Modeling and Applications. 285–295.

PREPARATA, F. AND SHAMOS, M. 1993. Computational Geometry: An Introduction. Springer-Verlag,

New York.

SCHWERDT, J. 2001. Ph.D. thesis. Ph.D. thesis, Department of Computer Science, University of

Magdeburg, Magdeburg, Germany.

SHAUL, H. AND HALPERIN, D. 2002. Improved construction of vertical decompositions of 3D ar-

rangements. In Proc. 18th ACM Symposium on Computational Geometry. 283–292.

VRMeshTM, VirtualGrid, Inc., Washington. http://www.vrmesh.com.

Received December 2003; accepted August 2006

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.6, 2006.

