
Stroke-based Rendering and Planning for Robotic Performance of
Artistic Drawing

Ivaylo Ilinkin1, Daeun Song2 and Young J. Kim2

Abstract— We present a new robotic drawing system based
on stroke-based rendering (SBR). Our motivation is the artistic
quality of the whole performance. Not only should the generated
strokes in the final drawing resemble the input image, but the
stroke sequence should also exhibit a human artist’s planning
process. Thus, when a robot executes the drawing task, both
the drawing results and the way the robot executes would look
artistic.

Our SBR system is based on image segmentation and depth
estimation. It generates the drawing strokes in an order that
allows for the intended shape to be perceived quickly and
for its detailed features to be filled in and emerge gradually
when observed by the human. This ordering represents a stroke
plan that the drawing robot should follow to create an artistic
rendering of images. We experimentally demonstrate that our
SBR-based drawing makes visually pleasing artistic images,
and our robotic system can replicate the result with proper
sequences of stroke drawing.

I. INTRODUCTION

The early incarnation of mechanical drawing can be traced
back several decades to Tinguely and AARON [1]. Since
then, many exciting approaches for robotic drawing, or more
broadly robotic art, have been pursued by roboticists. Thanks
to the availability of robust and affordable robotic and
sensing hardware components, more and more modern artists
and scientists have been engaged in pushing the frontier of
robotic art. This research direction has been fueled further
by recent progress in generative art in machine learning and
fast and scalable computer graphic algorithms.

Most of the existing robotic art systems focus on mim-
icking the drawings of human artists using robots. The
conventional robotics paradigm of sensing, planning, and
control has been exploited to autonomously create these
drawings as accurately or quickly as possible. Consequently,
robotic drawing has traditionally been evaluated based on
how close the drawing result is to human art. In this paper,
we divert this research trend by asking how the human artist
would draw rather than what the human artist would draw. In
other words, we would like to create an autonomous robotic
drawing system that not only creates an artistic drawing but
also executes the task in a manner that resembles how a
human artist would draw. This question boils down to the
planning aspect of the robotics paradigm.

Our new robotic drawing system relies on drawing strokes
as underlying drawing primitives, namely stroke-based ren-

1I. Ilinkin is with the department of computer science at Gettysburg
College in the U.S.A. iilinkin@gettysburg.edu

2D. Song and Y. J. Kim are with the department of com-
puter science and engineering at Ewha womans university in Korea
daeunsong@ewhain.net, kimy@ewha.ac.kr

Fig. 1. Stroke-based robotic drawings. Left: original images. Right: our
robotic drawings with 2000 strokes and four colors.

dering or stroke-based drawing [2], as demonstrated in
Fig. 1. The primary goal of our robotic drawing is to make
robotic stroke-based drawing artistic. At the same time, we
would like to have the sequence of drawing strokes also
look natural to human observers, which makes our system
different from what can be obtained from a mechanical
color printer. This aspect would be crucial for robotic art,
particularly from the artistic performance point of view.

Our stroke-based rendering (SBR) method is guided by the
semantic content in the image, but central to our idea is the
use of depth information based on the following observation:
Given a plausible depth map for a semantic unit in the
image (e.g., a face in a portrait) we distribute the strokes
over the contours of the layers defined by a plane moving
from the back of the face toward the viewer. As the drawing
evolves, the viewer quickly perceives the intended shape and
also gradually observes detail getting filled in. To avoid the
appearance of uniformly shrinking curves, we use binning
for the depth values, which appears to be quite successful in
giving the impression that the focus is in different areas as
the shape is being defined.

In summary, this paper makes the following contributions:

• New SBR system that integrates algorithms for image
segmentation and depth estimation. The system does not
require user assistance.

• Algorithm for generating a stroke plan, i.e., stroke
ordering and placement, for a robotic painter. The aim
is to convey to an observer of the drawing process a
human-like painting style. The depth map is a central
component of the proposed method, which we have
named layered depth.

• We compare our approach against the state-of-the-art
SBR methods and show that our results have a similar
rendering quality but have a more natural stroke order.

• We show various SBR-based artistic drawing results and
demonstrate the robotic drawing of complicated artistic
images using SBR and bi-manual coordinate parallel
drawing.

The rest of this paper is organized as follows. We survey
works relevant to SBR and robotic drawing in Sec.II. In
Sec. III, we explain our SBR pipeline including stroke
rendering and planning. Sec. IV depicts our stroked-based
robotic drawing system. We show our drawing results and
provide a comparison with a state-of-the-art SBR method in
Sec. V, and conclude the paper in Sec.VI.

II. PREVIOUS WORK

A. Stroke-based Rendering

Early SBR research was primarily concerned with the
artistic quality of the final image. Litwinowicz [3] proposed
a method for manipulating a reference image to achieve an
impressionist effect. Strokes are generated starting from seed
points placed on a regular grid by following the tangent to
the gradient in both directions until a predefined length or
an edge boundary. During rendering, the order of the strokes
is randomized to avoid artifacts due to spatial coherence.
Hertzmann’s work [2] adapts this strategy by searching the
neighborhoods of the stroke seeds for the point with the most
significant error between the reference image and a smoothed
version. In addition, [2] considerably increases the range of
possible styles by including a number of style parameters
in the stroke generation and rendering process. A survey of
early SBR work is given in [4].

While early research in SBR mainly considered local
image properties, later work incorporated the semantic in-
formation by introducing user-guided or automatic image
segmentation and labeling techniques. Lin et al. [5] create a
dictionary of brushes for different categories of objects and
use the semantic content as a guide for stroke placement
and rendering. Their system employs user-driven image
segmentation. Hertzmann [6] presents a similar system that
adds a higher degree of automation for the various tasks
and integrates capabilities for the synthesis and editing of
strokes. Zeng et al. [7] explore the semantic information via
hierarchical decomposition by organizing the components in
a parse tree that guides the rendering process. The segmen-
tation subdivision is fairly detailed and includes both user-
driven and automatic stages.

Advances in Machine Learning (ML) have generated
renewed interest in SBR research by offering new ways
to generate content. The systems can now ”learn how to
paint” via rules encoded in loss/reward functions but appear
disconnected from the rendering process, unlike the early
SBR research. Huang et al. [8] use deep reinforcement
learning (DRL) with adversarial loss feedback to learn a
rendering sequence that minimizes the difference between
the target image and the final painting. Singh and Zheng [9],
[10] use a similar approach but also incorporate semantic
information to create different patterns in processing fore-
ground and background strokes. Their images are sharper,
with a noticeable emphasis on the more refined features of
the foreground objects.

The work in this paper shares the goal and motivation of
Schaldenbrand and Oh [11]. Their primary emphasis is on
training the system to produce a stroke sequence that exhibits
characteristics of human planning and can be executed by a
robot arm. In other words, it should be evident early on what
the system is painting, similar to the ”blocking in” technique
used by artists to quickly apply the rough outlines of the
dominant elements in the scene. The kinematic constraint set
is what sets apart our work and [11] from the work in [8],
[9], which produces unrealistic strokes that a robotic system
cannot execute. While we share the same aim as [11], our
approach is closer to that in [5], [6], [7], [9]. Our method is
also guided by the semantic content in the image, but we use
depth information to distribute the strokes over the contours
to be gradually perceivable as the drawing evolves.

B. Robotic Drawing

Harold et al. did seminal artistic work on building drawing
machines called AARON [1]. AARON can generate artwork
using a plotting machine programmed by a computer. Human
portrait style drawing system was proposed using the HOAP2
humanoid [12]. Paul the robot [13] can draw a stylistic
portrait by observing the target object with the camera
and mimicking artistic signatures. eDavid [14] uses a non-
photorealistic algorithm in computer graphics for drawing
and relies on an industrial robot with visual feedback. Song
et al. presented a robotic pen-art system called SSK that
can create pen art on arbitrary surfaces using impedance
control [15] while minimizing drawing distortion [16]. Liu
et al. presented a robotic drawing system that can draw on a
non-flat surface using closed-loop planning [17]. Generative
art using machine learning is being increasingly used for
robotic art. Wang et al. proposed a drawing method for
personalized avatar characters using generative adversarial
network-based style transfer [18]. Reinforcement learning is
also explored to learn from the painter database where to
place the brush strokes [11]. The main departure of our work
from the existing robotic drawing systems is that we use
stroke-based drawing and its ordering.

III. STROKE-BASED RENDERING AND
PLANNING

Given an input image I and desired number of strokes
N , our system generates a stroke plan for a robotic painter.
Since a robotic painter may have a limited selection of colors
(e.g., pen-based system), the user can specify a target number
of colors for the painting. In this case, we adopt the approach
in [11] that uses k-means clustering to partition the RGB
color space of the image into a palette of k colors.

The proposed system integrates algorithms for instance
and semantic segmentation (panoptic segmentation) [19] and
monocular depth estimation [20]. State-of-the-art segmenta-
tion and depth analysis algorithms provide rich and reliable
estimates about the image content that guide our selection
of stroke order and stroke placement. The following sections
discuss each stage in the pipeline.

A. Panoptic Segmentation

We use Detectron2 [21] to perform panoptic segmenta-
tion [19] and assign semantic labels to the pixels in the
image and to the identify the salient objects. The output of
this stage is a union of two classes denoted in [19] as things
and stuff where the former represents the concrete objects in
the scene. At the same time, the latter refers to areas that
are less well defined but share similar textures or materials
(e.g., grass or snow). In the rest of the paper, we will use the
term prediction to refer to both things and stuff. Fig. 2(b)
shows a visual representation of the output from this stage
on the original image in Fig. 2(a).

In our pipeline, things are processed first since they
represent the concrete predictions, i.e., salient elements, in
the scene. In order to balance prediction confidence and
instance dominance, each thing is assigned a weight that is
the product of the reported confidence score and its area in
pixels, i.e., thing.weight = thing.score× thing.area and
things are sorted by decreasing weight.

The stuff is processed in semantic order. We have re-
ordered and grouped the semantic labels recognized by De-
tectron2 in the painting planning task.The exact grouping and
ordering within a group are subject to further investigation.

B. Stroke Selection and Stroke Generation

For each prediction pi in the panoptic segmentation, we
select a set of candidate pixels that serve as generators for
the final strokes. Note that our main goal is to identify a good
stroke ordering that could resemble the planning of a human
painter. Thus, any established strategy for stroke selection
and generation discussed in Sec. II can be used at this stage.

In this work, the stroke seeds are chosen as the centroids
of regions within pi that are perceptually similar. The com-
putation of these regions, called superpixels, is essentially
an image segmentation task considering the tradeoff between
shape compactness (regularity) and perceptual similarity. The
Simple Linear Iterative Clustering (SLIC) algorithm [22],
[23] is one of the prominent examples based on k-means
that optimizes a distance function in 5D space which is a
combination of the color distance in CIELAB and the spatial

distance in the image. The particular implementation used in
our work is based on the Watershed algorithm [24], [25] from
the Python scikit-image library [26]. Figs. 2(d) and 2(e),
respectively, show the superpixel segmentation and the cen-
troids of the corresponding regions for the person prediction.

Let Si represent the set of candidate seeds for prediction
pi. The size of Si, i.e., the number of superpixel regions
to identify in pi, is computed as |Si| = size(pi)

size(I) N , where
size(·) returns the number of pixels within a region of
the image. After identifying the set of stroke seeds, we
use AniPainter [27] to generate the strokes. AniPainter is
a variation on the stroke generation algorithm proposed by
Hertzmann [2].

C. Depth Estimation and Stroke Ordering

We use MiDaS [20] to perform depth estimation for the
target image and then smooth the computed depth values
with a Gaussian filter. Fig. 2(c) shows a visual representation
of the smoothed depth map.

Next, we compute the depth map’s histogram, H , and
use the histogram’s bins to determine the order of strokes.
Algorithm 1 outlines the process for a given prediction pi.
The algorithm partitions the set of stroke seeds Si into an
ordered list of disjoint subsets S′

i, which we call frames.
Referring to the analogy in Sec. I of a plane moving through
the depth range for pi starting at the back and toward the
viewer, each frame represents the stroke seeds in Si that lie in
the intersection of the plane with pi. Early in this process, the
frames can be recognized as the silhouette of pi. However,
later on, there is enough variation within the depth map to
give the impression of shifting attention to different areas
in pi. The histogram bins give ”thickness” to the plane and
ensure that for each frame, a sufficient number of candidate
seeds are collected for painting.

Each frame is sorted using a two-level criterion. The image
is subdivided into a 5x5 grid, and the candidate seeds are first
ordered by their grid cells (top-to-bottom, left-to-right) and
then within a cell by their (i, j) coordinates. This aim is to
direct the attention of the robot painter to a particular area for
some time to avoid the appearance of scan-line processing.
The coarse grid ensures that the robot painter will spend
some time working on the right side of the ”silhouette” of
pi before switching to the left side.

Algorithm 1: Stroke Ordering
Input: H , depth map histogram for target image I

Si, set of stroke seeds for prediction pi
Output: set of frames to be painted for pi

1 frames← []
2 foreach bin ∈ H do
3 S′

i ← bin ∩ Si

4 sort S′
i by pixel coordinates and 5×5 grid

5 frames.append(S′
i)

6 end
7 return frames

(a) (b) (c) (d) (e) (f)

Fig. 2. The output from each stage in the pipeline: (a) original image 641×513; (b) panoptic segmentation into things (person, sheep, dog) and stuff
(house, roof, tree, grass); (c) smoothed depth map; (d) superpixel segmentation of the person prediction; (e) stroke seeds for the person prediction based
on superpixel segmentation; (f) final painting with 2000 strokes of stroke-width six and no restrictions on number of colors.

D. Layered Depth Algorithm

The algorithm for generating a stroke plan to produce
a painting for image I given a number of strokes N is
shown in Algorithm 2. We begin by computing the panoptic
segmentation to identify the salient objects (things) and
regions of interest (stuff). Objects in the thing class are
sorted by weight that considers both the size of the item
and the confidence score of the prediction. We use the
semantic ordering for objects in the stuff class. Next, we
compute the depth map and its histogram, which are the
critical components of the proposed method. They enable
us to generate a stroke ordering that conveys deliberate
planning to an outside observer. For each object in the
panoptic segmentation, we compute a sequence of frames
of candidate stroke seeds. The back-to-front order ensures
that the strokes are reasonably far apart in the beginning,
giving the impression that the robot artist is sketching the
object outline. As the frames move to the front, variations in
the depth map cluster the strokes into separate sub-regions,
giving the appearance that the robot is concentrating on the
features of the object.

Algorithm 2: Layered Depth Painting
Input: I , target image I

N , total number of strokes
Output: S, set of stroke seeds for painting of I

1 P ← PanopticSegmentation(I) III-A
2 sort P by wi = scorei × areai (for things) and

semantic meaning (for stuff)
3 D ← ComputeDepthMap(I) III-C
4 H ← ComputeHistogram(D)
5 frames← []
6 foreach pi ∈ P do
7 Si ← ComputeStrokeSeeds(pi) III-B
8 framesi ← ComputeFrames(H,Si) Alg. 1
9 frames.append(framesi)

10 end
11 return frames

IV. STROKE-BASED ROBOTIC DRAWING

We render our simulated strokes in a physical space using
a robot painter. As shown in Fig. 4, our robotic setup consists
of two UR5e manipulators, each equipped with Robotiq

adaptive 3-finger gripper to hold the pen tool. The gripper
allows us to change the colors whenever needed, resulting
in a fully automated robotic drawing system. Our novel
design of a pen-holding tool enables our system to robustly
change the tools even under slight motion perturbations due
to position or motion errors.

A. Bi-manual Coordinated Parallel Drawing

The robotic manipulator drawing the pen strokes can be
viewed as a problem finding continuous robot joint config-
urations whose end-effector follows the given stroking path.
We solve this problem by iteratively solving the Inverse
Kinematics (IK) for the given drawing path [28], [29]. We
set the minimum distance objective in the configuration space
to ensure no sudden joint jumps happen, which can result in
bad drawing results or collision with the drawing canvas.

Although many possible drawing strategies exist for dual-
arm setup for efficient robotic drawing, we aim to draw using
dual manipulators sharing the same drawing canvas space C.
Because the canvas is shared, collision-aware robot motion
planning is mandatory for drawing strokes, considering each
manipulator moving in real-time. However, this is a costly
and not scalable solution for our system, which draws
thousands of strokes. Instead, we perform a coordinated
parallel drawing between the manipulators. Specifically, we
perform bi-manual drawing by sub-dividing the canvas into
half, Cright and Cleft, where Cright represents the canvas
space that is on the right manipulator side. We take the
drawing sequence as the priority. When the right manipulator
draws on Cright, the left manipulator will initiate the first
stroke in the sequence on Cleft and execute it concurrently
with the right manipulator. We pre-plan the robot trajectory
for each manipulator’s tool change that does not interfere
with the other one’s drawing canvas space so that the tool
change can also be performed whenever necessary.

V. EXPERIMENTAL RESULTS

A. Stroke Rendering Results

Fig. 3 shows representative results on images of varying
complexity and composition. Guided by the segmentation
algorithm, we can focus on the prominent objects in the
scene, starting with a rough outline for each and progres-
sively filling in details. The depth map contains enough
variation that, combined with the grid-based sorting, gives
the appearance of human-like planning of sketching different

Target 50 strokes 250 strokes 500 strokes 1000 strokes Painting

Fig. 3. Representative results for N = 2000. All strokes are opaque of fixed stroke-width 6 with no restriction on the number of colors. The stroke
sequence is determined by Algorithm 2 and the strokes are generated and rendered by AniPainter [27].

3D printed
pen-tools

Target canvas

Manipulators

Fig. 4. Bi-manual robotic drawing system setup with pen-tool change
mechanism.

parts of the silhouette or concentrating on different areas
within the object or within the scene when drawing back-
ground elements.

Table I gives a summary of execution times for the various
stages in the pipeline. The experiments were run on Ubuntu
22.04-based machine with NVIDIA GeForce RTX 2060 GPU
(CUDA 11.7; Driver 515.48.07) and Intel® Core™ i9-9900
CPU @ 3.10GHz × 16 CPU.

Fig. 5 shows a comparison with the results of the Content
Masked Loss (CML) painter of Schaldenbrand and Oh [11].
CML targets portrait-like scenes and successfully achieves
the ”blocking in” effect employed by an artist using large
strokes to quickly compose the scene before filling in the

TABLE I
EXECUTION TIMES IN SECONDS FOR THE RESULTS IN FIG. 3

Target (W ×H) Segmentation Depth Overall
Row 1 (500× 499) [30] 7.97 4.09 106.25
Row 2 (334× 500) [31] 7.99 4.18 85.05
Row 3 (641× 513) [32] 17.30 4.33 148.95
Row 4 (512× 384) [7] 8.83 4.12 80.31
Row 5 (512× 384) [33] 18.91 4.26 90.61

details with strokes that tend to get smaller. Currently, our
method has a less global reach in the early stages of the
painting process but exhibits more deliberate behavior when
working on the finer details. In some sense, a one-to-one
comparison may not be relevant here since the two methods
could be seen as having different painting/drawing styles.
In both cases, the stroke sequence appears planned and
purposeful.

B. Robotic Rendering Results

Fig. 1 shows our robotic rendering results; also refer to our
digital rendering results shown in Figs. 3 and 5. We generated
the data with 2000 strokes with four colors. The paper
drawing canvas has a physical dimension of 160 × 160 ∼
160× 200 mm2. The overall robotic drawing by our system
takes hours of time because we executed our robot at a low
speed. This decision avoids any possible hazardous situations

Target 50 strokes 250 strokes 500 strokes 1000 strokes Painting

Fig. 5. Comparison between the results from our work (top row) with the results in [11] (bottom row) for N = 2000 and a palette of 8 colors. The
target images are from the software repository [30] that accompanies [11]. This is not so much a direct comparison, but rather a juxtaposition of alternative
approaches. For example, the model in [11] was trained for wider and longer strokes, which gives the effective ”blocking in” appearance early on. We
choose a narrower brush that helps sketch out the outline and fill in details, but requires more strokes to cover the canvas.

in the robot or the surrounding environment (i.e., robot
operator). As seen from the result, the colors of the digital
and physical robotic rendering results are not the same.
This is because the colors of the drawing tool (pen) do not
match the color palette we obtained using our RGB color-
clustering algorithm. Although we have used four colors
for experiments, our system can handle more colors if we
3d-print more pen tools and use the full reachability of
both manipulators for the tool change. The white spaces
come from the stroke width difference for the pen. Instead,
reducing the target drawing size or using a thicker pen would
help reduce these spaces. The experiment revealed that 2000
strokes were too much for our current experimental setup
considering the canvas and pen stroke sizes. The drawing
stroke tends to be applied to a similar place multiple times,
sometimes tearing the paper. Considering its thickness and
color, finding a proper drawing tool is a current challenge in
our system.

VI. CONCLUSIONS

In this paper, we present a new robotic drawing system
based on stroke-based rendering that can create drawings
resembling the input image artistically and the sequence of
the strokes that human artists would create. Our SBR system
is based on image segmentation and depth estimation to
generate drawing strokes so that humans can perceive the
intended shape quickly but gradually better when observed.
We demonstrate that our SBR-based drawing makes artistic
images, and our robotic system can replicate the result that
human artists would draw. While the motion of our robotic
drawing system may not resemble that of a human artist, the
system’s ability to emulate the drawing sequence of a human
is of greater importance in this paper. Thus, our system has
the potential to serve as both an automated drawing tool and
as an artistic performance for human artists to experiment
with.

In future work, we plan to experiment with other ordering
sequences at the global level. Currently, we process the

elements in the scene by the weight property defined in
Sec. III-A. An alternative approach might be to draw the first
few layers for each element in the things class. Since the first
few layers tend to show the element outline, this would give
the appearance of pre-planning the scene composition, which
might be particularly effective for a complex scene such as
the one in the bottom row of Fig. 3.

REFERENCES

[1] P. McCorduck, AARON’S CODE: Meta-Art, Artificial Intelligence, and
the Work of Harold Cohen. W. H. Freeman & Co, 1990.

[2] A. Hertzmann, “Painterly rendering with curved brush strokes of
multiple sizes,” in Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’98.
New York, NY, USA: Association for Computing Machinery, 1998, p.
453–460. [Online]. Available: https://doi.org/10.1145/280814.280951

[3] P. Litwinowicz, “Processing images and video for an impressionist
effect,” in Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’97. USA:
ACM Press/Addison-Wesley Publishing Co., 1997, p. 407–414.
[Online]. Available: https://doi.org/10.1145/258734.258893

[4] A. Hertzmann, “A survey of stroke-based rendering,” IEEE Computer
Graphics and Applications, vol. 23, no. 4, pp. 70–81, 2003.

[5] L. Lin, K. Zeng, H. Lv, Y. Wang, Y. Xu, and S.-C. Zhu, “Painterly
animation using video semantics and feature correspondence,” in
Proceedings of the 8th International Symposium on Non-Photorealistic
Animation and Rendering, ser. NPAR ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 73–80. [Online].
Available: https://doi.org/10.1145/1809939.1809948

[6] P. O’Donovan and A. Hertzmann, “Anipaint: Interactive painterly
animation from video,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 18, no. 3, pp. 475–487, 2012.

[7] K. Zeng, M. Zhao, C. Xiong, and S.-C. Zhu, “From image parsing to
painterly rendering,” ACM Trans. Graph., vol. 29, no. 1, dec 2009.
[Online]. Available: https://doi.org/10.1145/1640443.1640445

[8] Z. Huang, S. Zhou, and W. Heng, “Learning to paint with model-
based deep reinforcement learning,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 8708–8717.

[9] J. Singh and L. Zheng, “Combining semantic guidance and deep
reinforcement learning for generating human level paintings,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 16 382–16 391.

[10] J. Singh, C. Smith, J. Echevarria, and L. Zheng, “Intelli-paint: Towards
developing more human-intelligible painting agents,” in European
Conference on Computer Vision. Springer, 2022, pp. 685–701.

[11] P. Schaldenbrand and J. Oh, “Content masked loss: Human-like
brush stroke planning in a reinforcement learning painting agent,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 1, pp. 505–512, May 2021. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/16128

[12] S. Calinon, J. Epiney, and A. Billard, “A humanoid robot drawing
human portraits,” in IEEE-RAS International Conference on Humanoid
Robots, 2005.

[13] P. Tresset and F. F. Leymarie, “Portrait drawing by paul the robot,”
Computers and Graphics, vol. 37, 2013.

[14] T. Lindemeier, S. Pirk, and O. Deussen, “Image stylization with a
painting machine using semantic hints,” Computers and Graphics,
vol. 37, 2013.

[15] D. Song, T. Lee, and Y. J. Kim, “Artistic pen drawing on an
arbitrary surface using an impedance-controlled robot,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 4085–4090.

[16] D. Song and Y. J. Kim, “Distortion-free robotic surface-drawing using
conformal mapping,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 627–633.

[17] R. Liu, W. Wan, K. Koyama, and K. Harada, “Robust robotic 3-d
drawing using closed-loop planning and online picked pens,” IEEE
Transactions on Robotics, 2021.

[18] T. Wang, W. Q. Toh, H. Zhang, X. Sui, S. Li, Y. Liu, and W. Jing,
“Robocodraw: robotic avatar drawing with gan-based style transfer
and time-efficient path optimization,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 06, 2020, pp. 10 402–
10 409.

[19] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic
segmentation,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 9396–9405.

[20] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
“Towards robust monocular depth estimation: Mixing datasets for zero-
shot cross-dataset transfer,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 3, 2022.

[21] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[22] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“Slic superpixels,” June 2010.

[23] ——, “Slic superpixels compared to state-of-the-art superpixel meth-
ods,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 34, no. 11, pp. 2274–2282, 2012.

[24] F. Meyer, “Color image segmentation,” in 1992 International Confer-
ence on Image Processing and its Applications, 1992, pp. 303–306.

[25] P. Neubert and P. Protzel, “Compact watershed and preemptive slic:
On improving trade-offs of superpixel segmentation algorithms,” in
Proceedings of the 2014 22nd International Conference on Pattern
Recognition, 2014, pp. 996–1001.

[26] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image
contributors, “scikit-image: image processing in Python,” PeerJ, vol. 2,
p. e453, 6 2014. [Online]. Available: https://doi.org/10.7717/peerj.453

[27] P. Schaldenbrand, “Anipainter,” https://github.com/pschaldenbrand/AniPainter,
2020.

[28] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[29] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved
solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th Inter-
national Conference on Humanoid Robots (Humanoids). IEEE, 2015,
pp. 928–935.

[30] P. Schaldenbrand and J. Oh, “Content masked loss,”
https://github.com/pschaldenbrand/ContentMaskedLoss, 2020.

[31] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV. European Conference on Computer Vision,
September 2014. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/microsoft-coco-common-objects-in-context/

[33] M. Kümmerer, Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Du-
rand, A. Oliva, and A. Torralba, “Mit/tübingen saliency benchmark,”
https://saliency.tuebingen.ai/.

